First-Order Logic

Dr. Melanie Martin CS 4480 November 3, 2010 Based on slides from http://aima.eecs.berkeley.edu/2nd-ed/slides-ppt/

Outline

- Why FOL?
- Syntax and semantics of FOL
- Using FOL
- Wumpus world in FOL
- Knowledge engineering in FOL

Pros and cons of propositional logic

© Propositional logic is declarative

- © Propositional logic allows partial/disjunctive/negated information
 - (unlike most data structures and databases)
- © Propositional logic is compositional:
 - meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- © Meaning in propositional logic is context-independent
- (unlike natural language, where meaning depends on context)
- Propositional logic has very limited expressive power
 - (unlike natural language)
 - E.g., cannot say "pits cause breezes in adjacent squares"
 - except by writing one sentence for each square

First-order logic

- Whereas propositional logic assumes the world contains facts,
- first-order logic (like natural language) assumes the world contains
 - Objects: people, houses, numbers, colors, baseball games, wars, …
 - Relations: red, round, prime, brother of, bigger than, part of, comes between, ...
 - Functions: father of, best friend, one more than, plus, …

Syntax of FOL: Basic elements

Brother, >,...

x, y, a, b,...

- Constants KingJohn, 2, NUS,...
- Predicates
- Functions Sqrt, LeftLegOf,...
- Variables
- Connectives \neg , \Rightarrow , \land , \lor , \Leftrightarrow
- Equality =
- Quantifiers \forall , \exists

Atomic sentences

Atomic sentence = $predicate (term_1, ..., term_n)$ or $term_1 = term_2$

Term = $function (term_1,...,term_n)$ or constant or variable

 E.g., Brother(KingJohn,RichardTheLionheart) > (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

Complex sentences

• Complex sentences are made from atomic sentences using connectives $\neg S, S_1 \land S_2, S_1 \lor S_2, S_1 \Rightarrow S_2, S_1 \Leftrightarrow S_2,$

E.g. Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn) >(1,2) $\lor \le (1,2)$ >(1,2) $\land \neg >(1,2)$

Truth in first-order logic

- Sentences are true with respect to a model and an interpretation
- Model contains objects (domain elements) and relations among them
- Interpretation specifies referents for constant symbols → objects predicate symbols → relations function symbols → functional relations
- An atomic sentence predicate(term₁,...,term_n) is true iff the objects referred to by term₁,...,term_n are in the relation referred to by predicate

Models for FOL: Example

Universal quantification

∀<variables> <sentence>

Λ

٨

Λ

Everyone at CSUStan is smart: $\forall x At(x, CSUStan) \Rightarrow Smart(x)$

- $\forall x P$ is true in a model *m* iff *P* is true with *x* being each possible object in the model
- Roughly speaking, equivalent to the conjunction of instantiations of P

At(KingJohn, CSUStan) \Rightarrow Smart(KingJohn)

- At(Richard, CSUStan) \Rightarrow Smart(Richard)
- $At(CSUStan, CSUStan) \Rightarrow Smart(CSUStan)$

A common mistake to avoid

- Typically, \Rightarrow is the main connective with \forall
- Common mistake: using ∧ as the main connective with ∀:
 ∀x At(x,CSUStan) ∧ Smart(x)
 means "Everyone is at CSUStan and everyone is smart"