
Logic
Dr. Melanie Martin

CS 4480
November 1, 2010

Based on slides from
http://aima.eecs.berkeley.edu/2nd-ed/slides-ppt/

Proof methods
• Proof methods divide into (roughly) two kinds:

– Application of inference rules
• Legitimate (sound) generation of new sentences from old
• Proof = a sequence of inference rule applications

Can use inference rules as operators in a standard search
algorithm

• Typically require transformation of sentences into a normal form

– Model checking
• truth table enumeration (always exponential in n)
• improved backtracking, e.g., Davis--Putnam-Logemann-Loveland

(DPLL)
• heuristic search in model space (sound but incomplete)

e.g., min-conflicts-like hill-climbing algorithms

Resolution
Conjunctive Normal Form (CNF)

 conjunction of disjunctions of literals
clauses

E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

• Resolution inference rule (for CNF):
li ∨… ∨ lk, m1 ∨ … ∨ mn

li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk ∨ m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn

where li and mj are complementary literals.
E.g., P1,3 ∨ P2,2, ¬P2,2

 P1,3

• Resolution is sound and complete
for propositional logic

Resolution
Soundness of resolution inference rule:

¬(li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk) ⇒ li
 ¬mj ⇒ (m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨

mn)
¬(li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk) ⇒ (m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨

mn)

Conversion to CNF
B1,1 ⇔ (P1,2 ∨ P2,1)

1. Eliminate ⇔, replacing α ⇔ β with (α ⇒ β)∧(β ⇒ α).
(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1)

2. Eliminate ⇒, replacing α ⇒ β with ¬α∨ β.
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)

3. Move ¬ inwards using de Morgan's rules and double-negation:
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∨ ¬P2,1) ∨ B1,1)

4. Apply distributivity law (∧ over ∨) and flatten:
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)

Resolution algorithm
• Proof by contradiction, i.e., show KB∧¬α

unsatisfiable

Resolution example
• KB = (B1,1 ⇔ (P1,2∨ P2,1)) ∧¬ B1,1 α = ¬

P1,2

Forward and backward
chaining

• Horn Form (restricted)
KB = conjunction of Horn clauses

– Horn clause =
• proposition symbol; or
• (conjunction of symbols) ⇒ symbol

– E.g., C ∧ (B ⇒ A) ∧ (C ∧ D ⇒ B)
• Modus Ponens (for Horn Form): complete for Horn KBs

α1, … ,αn, α1 ∧ … ∧ αn ⇒ β
β

• Can be used with forward chaining or backward chaining.
• These algorithms are very natural and run in linear time

Forward chaining
• Idea: fire any rule whose premises are satisfied in the

KB,
– add its conclusion to the KB, until query is found

Forward chaining algorithm

• Forward chaining is sound and complete for Horn KB

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Proof of completeness
• FC derives every atomic sentence that is entailed

by KB
1. FC reaches a fixed point where no new atomic sentences

are derived
2. Consider the final state as a model m, assigning true/false

to symbols
3. Every clause in the original KB is true in m

 a1 ∧ … ∧ ak ⇒ b
4. Hence m is a model of KB
5. If KB╞ q, q is true in every model of KB, including m

Backward chaining
Idea: work backwards from the query q:

to prove q by BC,
check if q is known already, or
prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal
1. has already been proved true, or
2. has already failed

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Forward vs. backward
chaining

• FC is data-driven, automatic, unconscious
processing,
– e.g., object recognition, routine decisions

• May do lots of work that is irrelevant to the goal

• BC is goal-driven, appropriate for problem-solving,
– e.g., Where are my keys? How do I get into a PhD program?

• Complexity of BC can be much less than linear in
size of KB

Efficient propositional
inference

Two families of efficient algorithms for propositional
inference:

Complete backtracking search algorithms
• DPLL algorithm (Davis, Putnam, Logemann,

Loveland)
• Incomplete local search algorithms

– WalkSAT algorithm

The DPLL algorithm
Determine if an input propositional logic sentence (in CNF) is satisfiable.

Improvements over truth table enumeration:
1. Early termination

A clause is true if any literal is true.
A sentence is false if any clause is false.

2. Pure symbol heuristic
Pure symbol: always appears with the same "sign" in all clauses.
e.g., In the three clauses (A ∨ ¬B), (¬B ∨ ¬C), (C ∨ A), A and B are pure, C is

impure.
Make a pure symbol literal true.

3. Unit clause heuristic
Unit clause: only one literal in the clause
The only literal in a unit clause must be true.

The DPLL algorithm

The WalkSAT algorithm
• Incomplete, local search algorithm
• Evaluation function: The min-conflict heuristic of

minimizing the number of unsatisfied clauses
• Balance between greediness and randomness

The WalkSAT algorithm

Hard satisfiability problems
• Consider random 3-CNF sentences. e.g.,

(¬D ∨ ¬B ∨ C) ∧ (B ∨ ¬A ∨ ¬C) ∧ (¬C ∨ ¬B
∨ E) ∧ (E ∨ ¬D ∨ B) ∧ (B ∨ E ∨ ¬C)

m = number of clauses
n = number of symbols

– Hard problems seem to cluster near m/n = 4.3
(critical point)

Hard satisfiability problems

Hard satisfiability problems

• Median runtime for 100 satisfiable random 3-CNF
sentences, n = 50

Inference-based agents in
the wumpus world

A wumpus-world agent using propositional logic:

¬P1,1
¬W1,1
Bx,y ⇔ (Px,y+1 ∨ Px,y-1 ∨ Px+1,y ∨ Px-1,y)
Sx,y ⇔ (Wx,y+1 ∨ Wx,y-1 ∨ Wx+1,y ∨ Wx-1,y)
W1,1 ∨ W1,2 ∨ … ∨ W4,4
¬W1,1 ∨ ¬W1,2
¬W1,1 ∨ ¬W1,3
…

⇒ 64 distinct proposition symbols, 155 sentences

• KB contains "physics" sentences for every single
square

• For every time t and every location [x,y],
Lx,y ∧ FacingRightt ∧ Forwardt ⇒ Lx+1,y

• Rapid proliferation of clauses

Expressiveness limitation of
propositional logic

tt

Summary
• Logical agents apply inference to a knowledge base to derive new

information and make decisions
• Basic concepts of logic:

– syntax: formal structure of sentences
– semantics: truth of sentences wrt models
– entailment: necessary truth of one sentence given another
– inference: deriving sentences from other sentences
– soundness: derivations produce only entailed sentences
– completeness: derivations can produce all entailed sentences

• Wumpus world requires the ability to represent partial and negated
information, reason by cases, etc.

• Resolution is complete for propositional logic
Forward, backward chaining are linear-time, complete for Horn clauses

• Propositional logic lacks expressive power

