Logic

Dr. Melanie Martin
 CS 4480
 November 1, 2010

Based on slides from
http://aima.eecs.berkeley.edu/2nd-ed/slides-ppt/

Proof methods

- Proof methods divide into (roughly) two kinds:
- Application of inference rules
- Legitimate (sound) generation of new sentences from old
- $\operatorname{Proof}=$ a sequence of inference rule applications

Can use inference rules as operators in a standard search algorithm

- Typically require transformation of sentences into a normal form
- Model checking
- truth table enumeration (always exponential in n)
- improved backtracking, e.g., Davis--Putnam-Logemann-Loveland (DPLL)
- heuristic search in model space (sound but incomplete)
e.g., min-conflicts-like hill-climbing algorithms

Resolution

Conjunctive Normal Form (CNF)

conjunction of disjunctions of literals
clauses
E.g., $(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)$

- Resolution inference rule (for CNF):

$$
\frac{\left\lceil_{i} \vee \ldots \vee \zeta_{k},\right.}{m_{1} \vee \ldots \vee m_{\mathrm{n}}}
$$

where ${\zeta_{\mathrm{i}}}$ and m_{i} are complementary literals.
E.g., $P_{1,3} \vee P_{2,2} \quad \neg P_{2,2}$

- Resolution is sound and complete for propositional logic

Resolution

Soundness of resolution inference rule:

$$
\begin{aligned}
& \neg\left(\wp_{\mathrm{i}} \vee \ldots \vee \wp_{\mathrm{i}-1} \vee \wp_{i+1} \vee \ldots \vee 反_{k}\right) \Rightarrow \wp_{\mathrm{i}} \\
& \neg m_{\mathrm{j}} \Rightarrow\left(m_{1} \vee \ldots \vee m_{\mathrm{j}-1} \vee m_{\mathrm{j}+1} \vee \ldots \vee\right. \\
& m_{n} \text {) } \\
& \neg\left(\wp_{i} \vee \ldots \vee \wp_{i-1} \vee \wp_{i+1} \vee \ldots \vee \digamma_{k}\right) \Rightarrow\left(m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee\right. \\
& m_{n} \text {) }
\end{aligned}
$$

Conversion to CNF

$$
B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)
$$

1. Eliminate \Leftrightarrow, replacing $a \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow a)$.

$$
\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)
$$

2. Eliminate \Rightarrow, replacing $a \Rightarrow \beta$ with $\neg a v \beta$.

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)
$$

3. Move \neg inwards using de Morgan's rules and double-negation:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \vee \neg P_{2,1}\right) \vee B_{1,1}\right)
$$

4. Apply distributivity law (\wedge over \vee) and flatten:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)
$$

Resolution algorithm

- Proof by contradiction, i.e., show $K B \wedge \neg a$ unsatisfiable
function PL-ReSolution ($K B, \alpha$) returns true or false
clauses \leftarrow the set of clauses in the CNF representation of $K B \wedge \neg \alpha$ new $\leftarrow\}$
loop do
for each C_{i}, C_{j} in clauses do resolvents $\leftarrow \mathrm{PL}-\mathrm{Resolve}\left(C_{i}, C_{j}\right)$
if resolvents contains the empty clause then return true new \leftarrow new \cup resolvents
if new \subseteq clauses then return false
clauses \leftarrow clauses \cup new

Resolution example

- $K B=\left(\mathrm{B}_{1,1} \Leftrightarrow\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right)\right) \wedge \neg \mathrm{B}_{1,1} \mathrm{a}=\neg$ $P_{1,2}$

Forward and backward chaining

- Horn Form (restricted)
$\mathrm{KB}=$ conjunction of Horn clauses
- Horn clause =
- proposition symbol; or
- (conjunction of symbols) \Rightarrow symbol
- E.g., $C \wedge(B \Rightarrow A) \wedge(C \wedge D \Rightarrow B)$
- Modus Ponens (for Horn Form): complete for Horn KBs

- Can be used with forward chaining or backward chaining.
- These algorithms are very natural and run in linear time

Forward chaining

- Idea: fire any rule whose premises are satisfied in the $K B$,
- add its conclusion to the $K B$, until query is found

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Forward chaining algorithm

```
function PL-FC-Entails?( }KB,q)\mathrm{ returns true or false
    local variables: count, a table, indexed by clause, initially the number of premises
                        inferred, a table, indexed by symbol, each entry initially false
                            agenda, a list of symbols, initially the symbols known to be true
    while agenda is not empty do
        p\leftarrowPOP(agenda)
        unless inferred [p] do
        inferred [p]}\leftarrow\mathrm{ true
        for each Horn clause c in whose premise p appears do
            decrement count[c]
            if count[c]=0 then do
                if HEAD[c]=q then return true
                PuSh(HEAd[c], agenda)
    return false
```

- Forward chaining is sound and complete for Horn KB

Forward chaining example

Proof of completeness

- FC derives every atomic sentence that is entailed by $K B$

1. FC reaches a fixed point where no new atomic sentences are derived
2. Consider the final state as a model m, assigning true/false to symbols
3. Every clause in the original $K B$ is true in m

$$
a_{1} \wedge \ldots \wedge a_{k} \Rightarrow b
$$

4. Hence m is a model of $K B$
5. If $K B \vDash q, q$ is true in every model of $K B$, including m

Backward chaining

Idea: work backwards from the query q :
to prove q by BC, check if q is known already, or prove by $B C$ all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack
Avoid repeated work: check if new subgoal

1. has already been proved true, or
2. has already failed

Backward chaining example

Forward vs. backward chaining

- FC is data-driven, automatic, unconscious processing,
- e.g., object recognition, routine decisions
- May do lots of work that is irrelevant to the goal
- BC is goal-driven, appropriate for problem-solving,
- e.g., Where are my keys? How do I get into a PhD program?
- Complexity of BC can be much less than linear in size of KB

Efficient propositional inference

Two families of efficient algorithms for propositional inference:

Complete backtracking search algorithms

- DPLL algorithm (Davis, Putnam, Logemann, Loveland)
- Incomplete local search algorithms
- WalkSAT algorithm

The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is satisfiable.
Improvements over truth table enumeration:

1. Early termination

A clause is true if any literal is true.
A sentence is false if any clause is false.
2. Pure symbol heuristic

Pure symbol: always appears with the same "sign" in all clauses.
e.g., In the three clauses $(A \vee \neg B),(\neg B \vee \neg C),(C \vee A), A$ and B are pure, C is impure.
Make a pure symbol literal true.
3. Unit clause heuristic

Unit clause: only one literal in the clause
The only literal in a unit clause must be true.

The DPLL algorithm

function DPLL-SATISFIABLE?(s) returns true or false inputs: s, a sentence in propositional logic
clauses \leftarrow the set of clauses in the CNF representation of s symbols \leftarrow a list of the proposition symbols in s return DPLL(clauses, symbols, [])
function DPLL(clauses, symbols, model) returns true or false
if every clause in clauses is true in model then return true if some clause in clauses is false in model then return false P, value \leftarrow Find-PURE-SYMBOL(symbols, clauses, model) if P is non-null then return DPLL(clauses, symbols $-P_{,}[P=$ value \mid model $]$) P, value \leftarrow Find-Unit-Clause (clauses, model)
if P is non-null then return DPLL(clauses, symbols $-P,[P=$ value \mid model $]$) $P \leftarrow \mathrm{FIRST}($ symbols); rest $\leftarrow \operatorname{REST}$ (symbols) return DPLL(clauses, rest, $[P=$ true \mid model $]$) or DPLL(clauses, rest, $[P=$ false \mid model $]$)

The WalkSAT algorithm

- Incomplete, local search algorithm
- Evaluation function: The min-conflict heuristic of minimizing the number of unsatisfied clauses
- Balance between greediness and randomness

The WalkSAT algorithm

function WalkSAT(clauses, p, max-flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a "random walk" move max-flips, number of flips allowed before giving up
model \leftarrow a random assignment of true/false to the symbols in clauses
for $i=1$ to max-flips do
if model satisfies clauses then return model clause \leftarrow a randomly selected clause from clauses that is false in model with probability p flip the value in model of a randomly selected symbol
from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses return failure

Hard satisfiability problems

- Consider random 3-CNF sentences. e.g., $(\neg D \vee \neg B \vee C) \wedge(B \vee \neg A \vee \neg C) \wedge(\neg C \vee \neg B$ $\vee E) \wedge(E \vee \neg D \vee B) \wedge(B \vee E \vee \neg C)$
$m=$ number of clauses
$n=$ number of symbols
- Hard problems seem to cluster near $m / n=4.3$ (critical point)

Hard satisfiability problems

Hard satisfiability problems

- Median runtime for 100 satisfiable random 3-CNF sentences, $n=50$

Inference-based agents in the wumpus world

A wumpus-world agent using propositional logic:

$$
\begin{aligned}
& \neg P_{1,1} \\
& -W_{1,1} \\
& \mathrm{~B}_{x, y} \Leftrightarrow\left(P_{x, y+1} \vee P_{x, y-1} \vee P_{x+1, y} \vee P_{x-1, y, y}\right) \\
& S_{x, y} \Leftrightarrow\left(W_{x, y+1} \vee W_{x, v-1} \vee W_{x+1, y} \vee W_{x-1, y}\right) \\
& W_{1,1} \vee W_{1,2} \vee \ldots \vee W_{4,4} \\
& -W_{1,1} \vee \neg W_{1,2} \\
& -W_{1,1} \vee \neg W_{1,3}
\end{aligned}
$$

$\Rightarrow 64$ distinct proposition symbols, 155 sentences

function PL-WUMPUS-AGENT (percept) returns an action

inputs: percept, a list, [stench,breeze, glitter]
static: $K B$, initially containing the "physics" of the wumpus world
x, y, orientation, the agent's position (init. $[1,1]$) and orient. (init. right) visited, an array indicating which squares have been visited, initially false action, the agent's most recent action, initially null plan, an action sequence, initially empty
update x, y,orientation, visited based on action
if stench then $\operatorname{TelL}\left(K B, S_{x, y}\right)$ else $\operatorname{Tell}\left(K B, \neg S_{x, y}\right)$
if breeze then $\operatorname{TelL}\left(K B, B_{x, y}\right)$ else $\operatorname{Tell}\left(K B, \neg B_{x, y}\right)$
if glitter then action \leftarrow grab
else if plan is nonempty then action $\leftarrow \operatorname{POP}($ plan $)$
else if for some fringe square $[i, j], \operatorname{Ask}\left(K B_{,}\left(\neg P_{i, j} \wedge \neg W_{i, j}\right)\right)$ is true or for some fringe square $[i, j], \operatorname{Ask}\left(K B,\left(P_{i, j} \vee W_{i, j}\right)\right)$ is false then do plan $\leftarrow \mathrm{A}^{*}$-Graph-SEARCh $($ Route- $\mathrm{PB}([x, y]$, orientation, $[i, j]$,visited $))$ action $\leftarrow \operatorname{POP}($ plan $)$
else action \leftarrow a randomly chosen move
return action

Expressiveness limitation of propositional logic

- KB contains "physics" sentences for every single square
t. For every time t and every location $[x, y]$,
$L_{x, y} \wedge$ FacingRight $^{t} \wedge$ Forward $^{\boldsymbol{m}} \Rightarrow L_{x+1, y}$
- Rapid proliferation of clauses

Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
- syntax: formal structure of sentences
- semantics: truth of sentences wrt models
- entailment: necessary truth of one sentence given another
- inference: deriving sentences from other sentences
- soundness: derivations produce only entailed sentences
- completeness: derivations can produce all entailed sentences
- Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.
- Resolution is complete for propositional logic Forward, backward chaining are linear-time, complete for Horn clauses
- Propositional logic lacks expressive power

