Logic

Dr. Melanie Martin
CS 4480
November 1, 2010

Based on slides from
http://aima.eecs.berkeley.edu/2nd-ed/slides-ppt/

Proof methods

- Proof methods divide into (roughly) two kinds:

P ot -~ TN A

- Legitimate (sound) generation of new sentences from old

= a sequence of inference rule applications

Can use inference rules as operators in a standard search
algorithm

- Typically require transformation of sentences into a

I —— —— e o .

- truth table enumeration (always exponential in n)

- improved backtracking, e.g., Davis--Putham-Logemann-Loveland $
(DPLL)

* heuristic search in model space (sound but incomplete)
e.g., min-conflicts-like hill-climbing algorithms

b2 - e e i T e e S -w"‘——‘f\-—a‘hﬂ-WJ

a— T

Resolution

(CNF)
conjunction of disjunctions of literals

clauses
E.g,(Av-B)a(Bv-Cv-D)

P——————

inference rule (for CNF):
NSV YA

[iv...v[i_1v[i+1v...VZI<Vm1v...ij_1ij+1v...an

I —— —— e o - -

where £ and m are complementary literals.
NG ETaR s, -Ps, _
Pia P *
- Resolution is sound and complete) ?TK @’5
for propositional logic ilox T
w—t-m | W

: |
Resolution |
Soundness of resolution inference rule: |
SENI S VS Ve OV ;

—my=> (my V...V MgV Mg V..V

)

S AL Vay SRS VA B R TR Ve Mg V Mg Ve V

) :

. /‘WF‘
.’———Pb-«— e T e e S e A ’

- P e —WJ

Conversion to CNF

B1,1 = (P1,2 b P2,1)

. e e

1. Eliminate <, replacing a < B with (a = B)A(B = a).
(Bi1=(Piov P) a((PiovPyy) =By,

2. Eliminate =, replacing a = 8 with —av .
(=By 1 VP2V Py A (=(Pipv Py vByy)

A St i o .

3. Move - inwards using de Morgan's rules and double-negation:
(=By 1V P2V Pyy) A((=Pypv =Pyy) v By)

4. Apply distributivity law (A over v) and flatten: i‘
(=B41 VP12V Pyy) A(=PiovByg) A (=P vByy)

* Proof by contradiction, i.e., show KBA-a
unsatisfiable

Resolution algorithm %
|

function PL-RESOLUTION(KB, a) returns true or false
clauses « the set of clauses in the CNF representation of KB A ~«
new + { }
loop do
for each Cj, C; in clauses do
resolvents «+ PL-RESOLVE(C;, C))

if resolvents contains the empty clause then return true
- new < new U resolvents

if new C clauses then return false
clauses « clauses U new

Resolution example

* KB= By = (P1ov Pyy)) A-Byya=-

P1,2

ﬁPz.l\/ Bl.l

1 Bl.l\/ Pl.z\/ PZ.I

B,V P,VB, IP1 N P\ P, 2| -B, VP, VB,

]

ﬁPl.z\/ Bl.l

_‘Bl.l

E AN

Pl.z\/ Pz.l\/ ﬁPz.l

_‘Pz.l

—P,

Forward and backward

chaining

(restricted)

KB = conjunction of Horn clauses
— Horn clause =

* proposition symbol; or

 (conjunction of symbols) = symbol
— Eg,CAa(B=A)A (CArD= B)

(for Horn Form): complete for Horn KBs
G bl O R S 1,9 [— 1

B

Can be used with or

These algorithms are very natural and run in linear time

e I

Forward chaining

- lIdea: fire any rule whose premises are satisfied in the

KB,

NP B S

— add its conclusion to the KB, until query is found ‘

P = Q@

LAM = P
BANL == M
AANP = L
AANB = L

A

o
R

Forward chaining algorithm

function PL-FC-ENTAILS? (KB, q) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known to be true

while agenda is not empty do
p+ Popr(agenda)
unless inferred[p] do
inferred[p| « true
for each Horn clause ¢ in whose premise p appears do
decrement count|c|
if count|[c] = 0 then do
if HEAD|[c] = ¢ then return true
Pusu(HEAD[c], agenda)
return false

Forward chaining is sound and complete for Horn KB

. — A AN I g

Forward chaining example

Forward chaining example

Forward chaining example

t

Forward chaining example g

|

1

é

t

Forward chaining example g
|

Forward chaining example

!,
}l
;

t

Forward chaining example {

t

Forward chaining example g

|

Proof of completeness

s 2o P SR

- FC derives every atomic sentence that is entailed

by KB |
1. FCreaches a where no new atomic sentences i
are derived

2. Consider the final state as a model m, assigning true/false ,
to symbols ‘

3. Every clause in the original KB is true in m 1
N - e

4. Hence mis a model of KB
5. If KBE g, gis true in every model of KB, including m i

. o> e p— ——— - T TR e S e, ™ MP‘M—WJ-’ J

P ot -~ TN A

Backward chaining

ldea: work backwards from the query q:
to prove g by BC,
check if g is known already, or
prove by BC all premises of some rule concluding g

Avoid loops: check if new subgoal is already on the goal stack

— —— — a > .

Avoid repeated work: check if new subgoal
1. has already been proved true, or
2. has already failed é

Backward chaining example

t

|
|
|

!
1

é

Backward chaining example

|

Backward chaining example

!
}l

f

Backward chaining example

Backward chaining example

Backward chaining example

!,
}l

f

Backward chaining example

Backward chaining example

!,
}l

f

Backward chaining example

|

Backward chaining example

t

|
|
|

!
1

é

!

Forward vs. backward
chaining

S PP N N

« FCis ., automatic, unconscious
processing,

— e.g., object recognition, routine decisions

- May do lots of work that is irrelevant to the goal

P— P —— — B 4

- BCis , appropriate for problem-solving,
— e.g., Where are my keys? How do | get into a PhD program?

- Complexity of BC can be much less than linear in f
size of KB

-~

Efficient propositional '
inference

Two families of efficient algorithms for propositional
iInference:

Complete backtracking search algorithms

DPLL algorithm (Davis, Putnam, Logemann, |
Loveland) |

Incomplete local search algorithms
— WalkSAT algorithm i

The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is satisfiable.

B e Sl

Improvements over truth table enumeration:
1. Early termination
A clause is true if any literal is true.
A sentence is false if any clause is false.

2. Pure symbol heuristic

Pure symbol: always appears with the same "sign" in all clauses.

e.g., In the three clauses (A v -B), (-Bv -C), (C v A), Aand B are pure, C is
impure.

Make a pure symbol literal true.

I —— —— e o

3. Unit clause heuristic }
Unit clause: only one literal in the clause
The only literal in a unit clause must be true.

b2 - et A T I et S e -w*ﬂﬁw’WJ

The DPLL algorithm

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic

clauses + the set of clauses in the CNF representation of s
symbols + a list of the proposition symbols in s
return DPLL(clauses, symbols, ||)

function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P, value +— FIND-PURE-SYMBOL(symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols-P,|P = wvalue|model))
P, value <+ FIND-UNIT-CLAUSE(clauses, model)
if P is non-null then return DPLL(clauses, symbols-P,|P = value|model))
P« F1RST(symbols); rest «+— REST(symbols)
return DPLL(clauses, rest, [P = true|model|) or
DPLL(clauses, rest, [P = false|model))

a e S o~ i ;W

B ——

The WalkSAT algorithm

e I

Incomplete, local search algorithm

Evaluation function: The min-conflict heuristic of
minimizing the number of unsatisfied clauses

Balance between greediness and randomness

. —————— —

The WalkSAT algorithm

function WALKSAT(clauses, p, maz-flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic

p, the probability of choosing to do a “random walk” move
maz-flips, number of flips allowed before giving up

model <+ a random assignment of true/false to the symbols in clauses
for i = 1 to maz-flips do
if model satisfies clauses then return model
clause + a randomly selected clause from clauses that is false in model

with probability p flip the value in model of a randomly selected symbol
from clause

else flip whichever symbol in clause maximizes the number of satisfied clauses
return failure

Hard satisfiability problems

» Consider random 3-CNF sentences. e.g.,

(-Dv-BvC)aA(Bv-Av-C)a(-Cv =B
v-E)Aa (Ev =D v B)a (B v:E v=Cj)

m = number of clauses |
n = number of symbols

— Hard problems seem to cluster near m/n = 4.3 ‘
(critical point)

l -

08

Pr(satisfiable)

o
~

Hard satisfiability problems f

4 4 3
vvvvvv

o
o

i K T - 1. R -

Clause/symbol ratio m/n

t

|

1

é

!

e

Hard satisfiability problems
2(XX) | | I 1 rs— 1 I | i
1800 | DPLL —+ l‘
1600 | WalkSAT - Iﬂf ;
1400 | |

o 1200 | "l‘ ?
g | ‘
£ 1000 H |
& 800 | n'
600 1‘1 A
|
400 F l‘ % :‘. :x‘-x -
4 M S
200 F R e al
of B e |
0 1 2 3 4 5 6 7 8
Clause/symbol ratio m/n

 Median runtime for 100 random 3-CNF '
sentences, n =50

Inference-based agents in
the wumpus world

A wumpus-world agent using propositional logic:

Bx,y A (Px,y+1 v F)x,y-1 % IDx+1,y v F)x-1,y)
Sx,y = (WX’y v WX,y_1 v W Vv Wx_w)
W1,1 v W1,2 V..V W4,4

"W1,1 \' "W1,2

"W1,1 v "W1,3

x+1,y

=> 64 distinct proposition symbols, 155 sentences

-~

function PL-WUMPUS- AGENT(percept) returns an action
inputs: percept, a list, [stench,breeze, glitter]
static: KB, initially containing the “physics” of the wumpus world
z, y, orientation, the agent’s position (init. [1,1]) and orient. (init. right)
visited, an array indicating which squares have been visited, initially false
action, the agent’'s most recent action, initially null
plan, an action sequence, initially empty

update z,y,orientation, visited based on action

if stench then TELL(KB, S,) else TELL(KB, - S,,)

if breeze then TELL(KB, B, ;) else TELL(KB, — B,)

if glitter then action < grab

else if plan is nonempty then action < Popr(plan)

else if for some fringe square [i,j], ASK(KB, (= P;; A — W;;)) is true or
for some fringe square [i,j], ASK(KB, (P;; V W;;)) is false then do

plan < A*-GRAPH-SEARCH(ROUTE-PB([z,y], orientation, [ij], visited))
2 action < Popr(plan)

else action < a randomly chosen move
return action

s ———

R SN SRR 2

Expressiveness limitation of ’}
propositional logic

- KB contains "physics" sentences for every single
square

te For every time t and every location [x,y],

L., n FacingRight n Forwardt = L., |

- Rapid proliferation of clauses

Summary

+ Logical agents apply to a to derive new

information and make decisions
« Basic concepts of logic:
: formal structure of
of sentences wrt
: necessary truth of one sentence given another
: deriving sentences from other sentences
: derivations produce only entailed sentences
: derivations can produce all entailed sentences

- Wumpus world requires the ability to represent partial and negated

information, reason by cases, etc.
« Resolution is complete for propositional logic

Forward, backward chaining are linear-time, complete for Horn clauses é

« Propositional logic lacks expressive power

O~

R

— —— — a >

|

3

b - —— Bt e T e T A e A e e *roﬂ’*-——oﬂ*—"d‘w

