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Proof methods
• Proof methods divide into (roughly) two kinds:

– Application of inference rules
• Legitimate (sound) generation of new sentences from old
• Proof = a sequence of inference rule applications

Can use inference rules as operators in a standard search
algorithm

• Typically require transformation of sentences into a normal form

– Model checking
• truth table enumeration (always exponential in n)
• improved backtracking, e.g., Davis--Putnam-Logemann-Loveland

(DPLL)
• heuristic search in model space (sound but incomplete)

e.g., min-conflicts-like hill-climbing algorithms



Resolution
Conjunctive Normal Form (CNF)

   conjunction of disjunctions of literals
clauses

E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

• Resolution inference rule (for CNF):
li ∨… ∨ lk,  m1 ∨ … ∨ mn

li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk ∨ m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn

where li and mj are complementary literals.
E.g., P1,3 ∨ P2,2, ¬P2,2

       P1,3

• Resolution is sound and complete
for propositional logic



Resolution
Soundness of resolution inference rule:

¬(li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk) ⇒ li
       ¬mj ⇒ (m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨

mn)
¬(li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk) ⇒ (m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨

mn)



Conversion to CNF
B1,1  ⇔ (P1,2 ∨ P2,1)

1. Eliminate ⇔, replacing α ⇔ β with (α ⇒ β)∧(β ⇒ α).
(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1)

2. Eliminate ⇒, replacing α ⇒ β with ¬α∨ β.
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)

3. Move ¬ inwards using de Morgan's rules and double-negation:
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∨ ¬P2,1) ∨ B1,1)

4. Apply distributivity law (∧ over ∨) and flatten:
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)



Resolution algorithm
• Proof by contradiction, i.e., show KB∧¬α

unsatisfiable



Resolution example
• KB = (B1,1 ⇔ (P1,2∨ P2,1)) ∧¬ B1,1 α = ¬

P1,2



Forward and backward
chaining

• Horn Form (restricted)
KB = conjunction of Horn clauses

– Horn clause =
• proposition symbol;  or
• (conjunction of symbols) ⇒ symbol

– E.g., C ∧ (B ⇒ A) ∧ (C ∧ D ⇒ B)
• Modus Ponens (for Horn Form): complete for Horn KBs

α1, … ,αn, α1 ∧ … ∧ αn ⇒ β
β

• Can be used with forward chaining or backward chaining.
• These algorithms are very natural and run in linear time



Forward chaining
• Idea: fire any rule whose premises are satisfied in the

KB,
– add its conclusion to the KB, until query is found



Forward chaining algorithm

• Forward chaining is sound and complete for Horn KB



Forward chaining example
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Forward chaining example



Proof of completeness
• FC derives every atomic sentence that is entailed

by KB
1. FC reaches a fixed point where no new atomic sentences

are derived
2. Consider the final state as a model m, assigning true/false

to symbols
3. Every clause in the original KB is true in m

  a1 ∧  … ∧  ak ⇒ b
4. Hence m is a model of KB
5. If KB╞ q, q is true in every model of KB, including m



Backward chaining
Idea: work backwards from the query q:

to prove q by BC,
check if q is known already, or
prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal
1. has already been proved true, or
2. has already failed



Backward chaining example
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Backward chaining example



Forward vs. backward
chaining

• FC is data-driven, automatic, unconscious
processing,
– e.g., object recognition, routine decisions

• May do lots of work that is irrelevant to the goal

• BC is goal-driven, appropriate for problem-solving,
– e.g., Where are my keys? How do I get into a PhD program?

• Complexity of BC can be much less than linear in
size of KB



Efficient propositional
inference

Two families of efficient algorithms for propositional
inference:

Complete backtracking search algorithms
• DPLL algorithm (Davis, Putnam, Logemann,

Loveland)
• Incomplete local search algorithms

– WalkSAT algorithm



The DPLL algorithm
Determine if an input propositional logic sentence (in CNF) is satisfiable.

Improvements over truth table enumeration:
1. Early termination

A clause is true if any literal is true.
A sentence is false if any clause is false.

2. Pure symbol heuristic
Pure symbol: always appears with the same "sign" in all clauses.
e.g., In the three clauses (A ∨ ¬B), (¬B ∨  ¬C), (C ∨ A), A and B are pure, C is

impure.
Make a pure symbol literal true.

3. Unit clause heuristic
Unit clause: only one literal in the clause
The only literal in a unit clause must be true.



The DPLL algorithm



The WalkSAT algorithm
• Incomplete, local search algorithm
• Evaluation function: The min-conflict heuristic of

minimizing the number of unsatisfied clauses
• Balance between greediness and randomness



The WalkSAT algorithm



Hard satisfiability problems
• Consider random 3-CNF sentences. e.g.,

(¬D ∨ ¬B ∨ C) ∧ (B ∨ ¬A ∨ ¬C) ∧ (¬C ∨  ¬B
∨ E) ∧ (E ∨ ¬D ∨ B) ∧ (B ∨ E ∨ ¬C)

m = number of clauses
n = number of symbols

– Hard problems seem to cluster near m/n = 4.3
(critical point)



Hard satisfiability problems



Hard satisfiability problems

• Median runtime for 100 satisfiable random 3-CNF
sentences, n = 50



Inference-based agents in
the wumpus world

A wumpus-world agent using propositional logic:

¬P1,1
¬W1,1
Bx,y ⇔ (Px,y+1 ∨ Px,y-1 ∨ Px+1,y ∨ Px-1,y)
Sx,y ⇔ (Wx,y+1 ∨ Wx,y-1 ∨ Wx+1,y ∨ Wx-1,y)
W1,1 ∨ W1,2 ∨ … ∨ W4,4
¬W1,1 ∨ ¬W1,2
¬W1,1 ∨ ¬W1,3
…

⇒ 64 distinct proposition symbols, 155 sentences





• KB contains "physics" sentences for every single
square

• For every time t and every location [x,y],
Lx,y ∧ FacingRightt ∧ Forwardt ⇒ Lx+1,y

• Rapid proliferation of clauses

Expressiveness limitation of
propositional logic

tt



Summary
• Logical agents apply inference to a knowledge base to derive new

information and make decisions
• Basic concepts of logic:

– syntax: formal structure of sentences
– semantics: truth of sentences wrt models
– entailment: necessary truth of one sentence given another
– inference: deriving sentences from other sentences
– soundness: derivations produce only entailed sentences
– completeness: derivations can produce all entailed sentences

• Wumpus world requires the ability to represent partial and negated
information, reason by cases, etc.

• Resolution is complete for propositional logic
Forward, backward chaining are linear-time, complete for Horn clauses

• Propositional logic lacks expressive power


