Logic

Dr. Melanie Martin CS 4480 October 20, 2010 Based on slides from http://aima.eecs.berkeley.edu/2nd-ed/slides-ppt/

Wumpus World PEAS description

Performance measure

- gold +1000, death -1000
- -1 per step, -10 for using the arrow

Environment

- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square
- Sensors: Stench, Breeze, Glitter, Bump, Scream
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Wumpus world characterization

- Fully Observable No only local perception
- <u>Deterministic</u> Yes outcomes exactly specified
- Episodic No sequential at the level of actions
- <u>Static</u> Yes Wumpus and Pits do not move
- <u>Discrete</u> Yes
- <u>Single-agent?</u> Yes Wumpus is essentially a natural feature

Logic in general

- Logics are formal languages for representing information such that conclusions can be drawn
- Syntax defines the sentences in the language
- Semantics define the "meaning" of sentences;
 - i.e., define truth of a sentence in a world
- E.g., the language of arithmetic
 - $x+2 \ge y$ is a sentence; $x2+y > \{\}$ is not a sentence
 - $-x+2 \ge y$ is true iff the number x+2 is no less than the number y
 - $-x+2 \ge y$ is true in a world where x = 7, y = 1
 - $x+2 \ge y$ is false in a world where x = 0, y = 6

Entailment

• Entailment means that one thing follows from another:

KB ⊨ α

- Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true
 - E.g., the KB containing "the Giants won" and "the Reds won" entails "Either the Giants won or the Reds won"
 - E.g., x+y = 4 entails 4 = x+y
 - Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

Models

- Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated
- We say *m* is a model of a sentence
- $M(\alpha)$ is the set of all models of α
- Then KB \models a iff $M(KB) \subseteq M(a)$
 - E.g. KB = Giants won and Reds won α = Giants won

Wumpus world sentences

Let $P_{i,j}$ be true if there is a pit in [i, j]. Let $B_{i,j}$ be true if there is a breeze in [i, j]. R1: $\neg P_{1,1}$ R2: $\neg B_{1,1}$ R3: $B_{2,1}$

 "Pits cause breezes in adjacent squares" R4: B_{1,1} ⇔ (P_{1,2} ∨ P_{2,1}) R5: B_{2,1} ⇔ (P_{1,1} ∨ P_{2,2} ∨ P_{3,1})
 KB = R1 ^ R2 ^ R3 ^ R4 ^ R5

Truth tables for inference

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
:	:	:	:	:	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	true
false	true	false	false	false	true	false	true	true	true	true	true	true
false	true	false	false	false	true	true	true	true	true	true	true	true
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	:	:	:	:	:	:	:	:	:	:	:
true	false	true	true	false	true	false						

Enumerate rows (different assignments to symbols), if KB is true in row, check that α is too

Inference by enumeration

function TT-ENTAILS? (KB, α) returns true or false

 $symbols \leftarrow$ a list of the proposition symbols in KB and α return TT-CHECK-ALL($KB, \alpha, symbols, []$)

function TT-CHECK-ALL(KB, α, symbols, model) returns true or false
if EMPTY?(symbols) then
if PL-TRUE?(KB, model) then return PL-TRUE?(α, model)
else return true

else do

 $P \leftarrow \text{FIRST}(symbols); rest \leftarrow \text{REST}(symbols)$ return TT-CHECK-ALL(*KB*, α , rest, EXTEND(*P*, true, model) and TT-CHECK-ALL(*KB*, α , rest, EXTEND(*P*, false, model)

• For *n* symbols, time complexity is $O(2^n)$, space complexity is O(n)

Logical equivalence

Two sentences are logically equivalent iff true in same models: α ≡ β iff α ⊨ β and β ⊨ α

 $\begin{array}{l} (\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg (\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg (\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{de Morgan} \\ \neg (\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{de Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \end{array}$

Validity and satisfiability

A sentence is valid if it is true in all models, e.g., *True*, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$

Validity is connected to inference via the Deduction Theorem: $KB \models \alpha$ if and only if ($KB \Rightarrow \alpha$) is valid

A sentence is satisfiable if it is true in some model e.g., Av B, C

A sentence is unsatisfiable if it is true in no models e.g., AA¬A

Satisfiability is connected to inference via the following: $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable

Proof methods

- Proof methods divide into (roughly) two kinds:
 - Application of inference rules
 - Legitimate (sound) generation of new sentences from old
 - Proof = a sequence of inference rule applications Can use inference rules as operators in a standard search
 - algorithm
 - Typically require transformation of sentences into a normal form

- Model checking

- truth table enumeration (always exponential in n)
- improved backtracking, e.g., Davis--Putnam-Logemann-Loveland (DPLL)
- heuristic search in model space (sound but incomplete)
 - e.g., min-conflicts-like hill-climbing algorithms