
11/26/18

1

Chapter
14

AN OVERVIEW OF
COMPUTATIONAL

COMPLEXITY

Learning Objectives
At the conclusion of the chapter, the student will be able
to:
• Explain the concept of computational complexity as it

relates to Turing machines
• Describe deterministic and nondeterministic solutions to

the SAT problem
• Determine if a Boolean expression in CNF is satisfiable
• Describe the efficiency of standard Turing machines that

simulate two-tape machines and of those that simulate
nondeterministic machines
• Define the complexity classes P and NP, as well as the

relationship between P and NP
• Explain the concepts of intractability and NP-completeness
• List some well-known NP-complete problems
• Discuss the significance and status of the P = NP? question

Efficiency of Computation
• Computational complexity is the study of the

efficiency of algorithms
• When studying the time requirements of an

algorithm, the following assumptions are made:
• The algorithm will be modeled by a Turing machine
• The size of the problem will be denoted by n
• When analyzing an algorithm, the focus is on its

general behavior, particularly as the size of the
problem increases

• A computation has time-complexity T(n) if it can
be completed in no more than T(n) moves on
some Turing machine

Turing Machine Models and
Complexity
• Although different models of Turing machines are

equivalent, the efficiency of a computation can be
affected by the number of tapes available and by
whether it is deterministic or nondeterministic
• Consider the Satisfiability Problem (SAT): given a

Boolean expression e in conjunctive normal form, find
an assignment of values to the variables so that e is true
• For example, the expression e1 = (x1’ Ú x2) Ù (x1 Ú x3) is

true when x1 = 0, x2 = 1, and x3 = 1
• However, the expression e2 = (x1 Ú x2) Ù x1’Ù x2’ is not

satisfiable

11/26/18

2

Solving the Satisfiability Problem

• A deterministic algorithm would take all possible
values for the n variables and evaluate the
expression for each combination
• Since there are 2n possibilities, the deterministic

solution has exponential time complexity
• A nondeterministic algorithm would guess the value

of each of the n variables at each step and evaluate
each of the 2n possibilities simultaneously, thus
resulting in an O(n) algorithm
• There is no known nonexponential deterministic

algorithm for solving the SAT problem

Simulation of a Two-Tape Machine
• Theorem 14.1 states that, if a two-tape machine can carry

out a computation in n steps, the computation can be
simulated by a standard Turing machine in O(n2) moves
• To simulate the two-tape computation, the standard

machine would
• Keep a description of the two-tape machine on its tape
• For each two-tape move, search the entire active area of its tape

• After n moves, the active area has a length of at most
O(n), so the entire simulation takes O(n2) moves

Simulation of a Nondeterministic
Machine
• Theorem 14.2 states that, if a nondeterministic machine can

carry out a computation in n steps, the computation can be
carried out by a standard Turing machine in O(kan) moves,
where k and a are independent of n
• To simulate the nondeterministic computation, the standard

machine would keep track of all possible configurations,
searching and updating the entire active area of its tape
• If k is the maximum branching factor for the nondeterministic

machine, after n steps there are at most kn possible
configurations, and the length of each configuration is O(n)
• Therefore, to simulate one move, the standard machine must

search an active area of length O(nkn)

Considerations Affecting Complexity
Classes and Languages
• It is difficult to classify languages by the complexity

classes associated with the corresponding Turing
machine acceptors
• Since the particular model of Turing machine used

affects the complexity of the associated algorithms, it is
difficult to determine which variation to use as the best
model of an actual computer
• The efficiency differences between deterministic and

nondeterministic algorithms can be much more
significant than differences between alternative
deterministic algorithms involving different numbers of
available tapes

11/26/18

3

The Complexity Classes P and NP
• There are two famous complexity classes associated

with languages: P and NP
• P is the set of all languages that are accepted by

some deterministic Turing machine in polynomial
time, without any regard to the degree of the
polynomial
• NP is the set of all languages that are accepted by

some nondeterministic Turing machine in
polynomial time

The Relationship Between P and NP

• Obviously, P Í NP
• What is not known is whether P is a proper subset

of NP, in other words,
is P Ì NP or P = NP?

• While it is generally believed that there are
languages in NP which are not in P, no one has yet
found a conclusive example
• Because of its significance on the feasibility of

certain computations, this question remains the
most fundamental unresolved problem in theoretical
computer science

Intractability

• A problem is intractable if it has such high resource
requirements that practical solutions are unrealistic,
although the problem may be computable in
principle
• Algorithms for solving intractable problems

consume an extraordinary amount of time for
nontrivial values of n on any computer available
now or in the foreseeable future
• According to the Cook-Karp thesis, a problem in P is

tractable, and one not in P is intractable

Some NP Problems
• The following problems, among others, can be

solved nondeterministically in polynomial time:
• The Satisfiability problem
• The Hamiltonian path problem: given an undirected

graph with n vertices, find a simple path that passes
through all the vertices
• The Clique problem: given an undirected graph with n

vertices, find a subset of k vertices such that there is an
edge between every pair of vertices in the subset

• These problems have deterministic solutions with
exponential time complexity, but no deterministic
polynomial solution has been found

11/26/18

4

Polynomial-Time Reduction
• Since NP problems have similar characteristics, it is

convenient to determine if they can be reduced to each
other
• A language L1 is polynomial-time reducible to another

language L2 if there exists a deterministic Turing machine
that can transform any string w1 in L1 to a string w2 in L2
so that
• The transformation can be completed in polynomial time, and
• w1 is in L1 if and only if w2 is in L2

• Consider 3SAT, a modified version of the SAT problem in
which each clause can have at most three literals; as
shown in Examples 14.9 and 14.10,
• The SAT problem is polynomial-time reducible to 3SAT
• The 3SAT problem is polynomial-time reducible to CLIQUE

NP-Completeness
• Some problems have been identified as being as

complex as any other problem in NP
• A language (or problem) L is NP-complete if
• L is in NP, and
• Every problem in NP is polynomial-time reducible to L

• As stated in Theorem 14.5, the Satisfiability
Problem is NP-complete
• This definition is very significant because, if a

deterministic polynomial-time algorithm is found
for any NP-complete problem, then every language
in NP is also in P

An Open Question: P = NP?
• Computer scientists continue to look for an efficient

(deterministic, polynomial-time) algorithm that can
be applied to all NP problems, therefore concluding
that P = NP
• On the other hand, if a proof is found that any of the

NP-complete problems is intractable, then we can
conclude that P Ì NP and that many interesting
problems are not practically solvable
• In spite of our best efforts, no efficient algorithm has

been found for any NP-complete problem, so our
conjecture is that P ¹ NP
• However, until a proof is found, P = NP? remains the

fundamental open question in complexity theory

