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Chapter 
14

AN OVERVIEW OF 
COMPUTATIONAL 

COMPLEXITY

Learning Objectives
At the conclusion of the chapter, the student will be able 
to:
• Explain the concept of computational complexity as it 

relates to Turing machines
• Describe deterministic and nondeterministic solutions to 

the SAT problem
• Determine if a Boolean expression in CNF is satisfiable
• Describe the efficiency of standard Turing machines that 

simulate two-tape machines and of those that simulate 
nondeterministic machines
• Define the complexity classes P and NP, as well as the 

relationship between P and NP
• Explain the concepts of intractability and NP-completeness
• List some well-known NP-complete problems
• Discuss the significance and status of the P = NP? question

Efficiency of Computation
• Computational complexity is the study of the 

efficiency of algorithms
• When studying the time requirements of an 

algorithm, the following assumptions are made:
• The algorithm will be modeled by a Turing machine
• The size of the problem will be denoted by n
• When analyzing an algorithm, the focus is on its 

general behavior, particularly as the size of the 
problem increases

• A computation has time-complexity T(n) if it can 
be completed in no more than T(n) moves on 
some Turing machine

Turing Machine Models and 
Complexity
• Although different models of Turing machines are 

equivalent, the efficiency of a computation can be 
affected by the number of tapes available and by 
whether it is deterministic or nondeterministic
• Consider the Satisfiability Problem (SAT): given a 

Boolean expression e in conjunctive normal form, find 
an assignment of values to the variables so that e is true
• For example, the expression e1 = (x1’ Ú x2) Ù (x1 Ú x3) is 

true when x1 = 0, x2 = 1, and x3 = 1
• However, the expression e2 = (x1 Ú x2) Ù x1’Ù x2’ is not 

satisfiable
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Solving the Satisfiability Problem

• A deterministic algorithm would take all possible 
values for the n variables and evaluate the 
expression for each combination
• Since there are 2n possibilities, the deterministic 

solution has exponential time complexity
• A nondeterministic algorithm would guess the value 

of each of the n variables at each step and evaluate 
each of the 2n possibilities simultaneously, thus 
resulting in an O(n) algorithm
• There is no known nonexponential deterministic 

algorithm for solving the SAT problem

Simulation of a Two-Tape Machine
• Theorem 14.1 states that, if a two-tape machine can carry 

out a computation in n steps, the computation can be 
simulated by a standard Turing machine in O(n2) moves
• To simulate the two-tape computation, the standard 

machine would
• Keep a description of the two-tape machine on its tape
• For each two-tape move, search the entire active area of its tape

• After n moves, the active area has a length of at most 
O(n), so the entire simulation takes O(n2) moves

Simulation of a Nondeterministic 
Machine
• Theorem 14.2 states that, if a nondeterministic machine can 

carry out a computation in n steps, the computation can be 
carried out by a standard Turing machine in O(kan) moves, 
where k and a are independent of n
• To simulate the nondeterministic computation, the standard 

machine would keep track of all possible configurations, 
searching and updating the entire active area of its tape
• If k is the maximum branching factor for the nondeterministic 

machine, after n steps there are at most kn possible 
configurations, and the length of each configuration is O(n)
• Therefore, to simulate one move, the standard machine must 

search an active area of length O(nkn)

Considerations Affecting Complexity 
Classes and Languages
• It is difficult to classify languages by the complexity 

classes associated with the corresponding Turing 
machine acceptors
• Since the particular model of Turing machine used 

affects the complexity of the associated algorithms, it is 
difficult to determine which variation to use as the best 
model of an actual computer
• The efficiency differences between deterministic and 

nondeterministic algorithms can be much more 
significant than differences between alternative 
deterministic algorithms involving different numbers of 
available tapes 
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The Complexity Classes P and NP
• There are two famous complexity classes associated 

with languages: P and NP
• P is the set of all languages that are accepted by 

some deterministic Turing machine in polynomial 
time, without any regard to the degree of the 
polynomial
• NP is the set of all languages that are accepted by 

some nondeterministic Turing machine in 
polynomial time

The Relationship Between P and NP

• Obviously, P Í NP
• What is not known is whether P is a proper subset 

of NP, in other words,
is P Ì NP  or P =  NP?

• While it is generally believed that there are 
languages in NP which are not in P, no one has yet 
found a conclusive example
• Because of its significance on the feasibility of 

certain computations, this question remains the 
most fundamental unresolved problem in theoretical 
computer science

Intractability

• A problem is intractable if it has such high resource 
requirements that practical solutions are unrealistic, 
although the problem may be computable in 
principle 
• Algorithms for solving intractable problems 

consume an extraordinary amount of time for 
nontrivial values of n on any computer available 
now or in the foreseeable future
• According to the Cook-Karp thesis, a problem in P is 

tractable, and one not in P is intractable

Some NP Problems
• The following problems, among others, can be 

solved nondeterministically in polynomial time:
• The Satisfiability problem
• The Hamiltonian path problem: given an undirected 

graph with n vertices, find a simple path that passes 
through all the vertices
• The Clique problem: given an undirected graph with n 

vertices, find a subset of k vertices such that there is an 
edge between every pair of vertices in the subset

• These problems have deterministic solutions with 
exponential time complexity, but no deterministic 
polynomial solution has been found
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Polynomial-Time Reduction
• Since NP problems have similar characteristics, it is 

convenient to determine if they can be reduced to each 
other
• A language L1 is polynomial-time reducible to another 

language L2 if there exists a deterministic Turing machine 
that can transform any string w1 in L1 to a string w2 in L2
so that
• The transformation can be completed in polynomial time, and
• w1 is in L1 if and only if w2 is in L2

• Consider 3SAT, a modified version of the SAT problem in 
which each clause can have at most three literals; as 
shown in Examples 14.9 and 14.10,
• The SAT problem is polynomial-time reducible to 3SAT
• The 3SAT problem is polynomial-time reducible to CLIQUE

NP-Completeness
• Some problems have been identified as being as 

complex as any other problem in NP
• A language (or problem) L is NP-complete if
• L is in NP, and
• Every problem in NP is polynomial-time reducible to L

• As stated in Theorem 14.5, the Satisfiability 
Problem is NP-complete
• This definition is very significant because, if a 

deterministic polynomial-time algorithm is found 
for any NP-complete problem, then every language 
in NP is also in P

An Open Question: P = NP?
• Computer scientists continue to look for an efficient 

(deterministic, polynomial-time) algorithm that can 
be applied to all NP problems, therefore concluding 
that P = NP
• On the other hand, if a proof is found that any of the 

NP-complete problems is intractable, then we can 
conclude that P Ì NP and that many interesting 
problems are not practically solvable
• In spite of our best efforts, no efficient algorithm has 

been found for any NP-complete problem, so our 
conjecture is that P ¹ NP
• However, until a proof is found, P = NP? remains the 

fundamental open question in complexity theory


