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Chapter 
12

LIMITS OF 
ALGORITHMIC 
COMPUTATION

Learning Objectives
At the conclusion of the chapter, the student will be able 
to:
• Explain and differentiate the concepts of computability and 

decidability
• Define the Turing machine halting problem
• Discuss the relationship between the halting problem and 

recursively enumerable languages
• Give examples of undecidable problems regarding Turing 

machines to which the halting problem can be reduced
• Give examples of undecidable problems regarding 

recursively enumerable languages
• Determine if there is a solution to an instance of the Post 

correspondence problem
• Give examples of undecidable problems regarding context-

free languages

Computability and Decidability
• Are there questions which are clearly and precisely 

stated, yet have no algorithmic solution?
• As stated in chapter 9, a function f is computable if there 

exists a Turing machine that computes the value of f for 
all arguments in its domain
• Since there may be a Turing machine that can compute f

for part of the domain, it is crucial to define the domain 
of f precisely
• The concept of decidability applies to computations that 

result in a “yes” or  “no” answer: a problem is decidable
if there exists a Turing machine that gives the correct 
answer for every instance in the domain

The Turing Machine Halting Problem
• The Turing machine halting problem can be stated as: 

Given the description of a Turing machine M and an 
input string w, does M perform a computation that 
eventually halts?
• The domain of the problem is the set of all Turing 

machines and all input strings w
• Any attempts to simulate the computation on a 

universal Turing machine face the problem of not 
knowing if/when M has entered an infinite loop
• By Theorem 12.1, there does not exist any Turing 

machine that finds the correct answer in all instances; 
the halting problem is therefore undecidable
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The Halting Problem and Recursively 
Enumerable Languages
• Theorem 12.2 states that, if the halting problem were 

decidable, then every recursively enumerable language 
would be recursive
• Assume that L is a recursively enumerable language and 

M is a Turing machine that accepts L
• If H is a Turing machine that solves the halting problem, 

then we can apply H to the accepting machine M
• If H concludes that M does not halt, then by definition the 

input string is not in L
• If H concludes that M halts, then M will determine if the input 

string is in L
• Consequently, we would have a membership algorithm 

for L, but we know that one does not exist for some 
recursively enumerable languages, therefore 
contradicting our assumption that H exists

Reducing One Undecidable Problem 
to Another
• A problem A is reduced to a problem B if the 

decidability of A follows from the decidability of B
• An example is the state-entry problem:  given any 

Turing machine M and string w, decide whether 
or not the state q is ever entered when M is 
applied to w
• If we had an algorithm that solves the state-entry 

problem, it could be used to solve the halting 
problem
• However, because the halting problem is 

undecidable, the state-entry problem must also 
be undecidable

The Blank-Tape Halting Problem
• Given a Turing machine M, determine whether or 

not M halts if started with a blank tape
• To show that the problem is undecidable,
• Given a machine M and input string w, construct from 

M a new machine Mw that starts with a blank tape, 
writes w on it, and acts like M
• Clearly, Mw will halt on a blank tape if and only if M 

halts on w
• If we start with Mw and apply the blank-tape halting 

problem algorithm to it, we would have an algorithm 
for the halting problem
• Since the halting problem is known to be undecidable, 

the same must be true for the blank-tape version 

The Undecidability of the Blank-Tape 
Halting Problem
• Figure 12.3 illustrates the process used to establish the result 

that the blank-tape halting problem is undecidable
• After Mw is built, the presumed blank-tape halting problem 

algorithm would be applied to Mw, yielding an algorithm for 
the halting problem, which leads to a contradiction
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Undecidable Problems for Recursively 
Enumerable Languages
• As illustrated before, there is no membership 

algorithm for recursively enumerable languages
• Recursively enumerable languages are so general 

that most related questions are undecidable
• Usually, there is a way to reduce the halting 

problem to questions regarding recursively 
enumerable languages, such as
• Is the language generated by an unrestricted grammar 

empty?
• Is the language accepted by a Turing machine finite? 

Is the Language Generated by an 
Unrestricted Grammar Empty?
• Given an unrestricted grammar G, determine whether 

or not L(G) is empty
• To show that the problem is undecidable,

• Given a Turing machine M and string w, modify M to create a 
new machine Mw, so that Mw saves its input on a special part 
of its tape, and whenever it enters a final state, it accepts the 
input only if the input is equal to w

• Construct a grammar Gw that generates L(Mw)
• Since L(Mw) = L(M) Ç { w }, L(Gw) is nonempty iff w Î L(M)
• Assuming there is an algorithm A for deciding whether or not 

an arbitrary L(G) is empty, we could apply it to Gw, which 
would give us a membership algorithm for any recursively 
enumerable language

• But this contradicts previous results that have established 
there is no such membership algorithm 

The Undecidability of the “L(G) = Æ”
Problem
• Figure 12.5 illustrates the process used to establish the result 

that the “L(G) = Æ” problem is undecidable
• After Gw is built, the presumed emptiness algorithm A would 

be applied to Gw, giving a membership algorithm for 
recursively enumerable languages, which is impossible

Is the Language Accepted by a Turing 
Machine finite?
• Given a Turing machine M, determine whether or not 

L(M) is finite
• To show that the problem is undecidable,

• Given a Turing machine M and string w, modify M to create a 
new machine M^, so that if any halting state of M is reached, 
M^ accepts all input

• Have M^ generate w on an unused portion of its tape and 
perform the same computations as M, so that 
• if M halts in any configuration, then M^ halts in a final state, and
• If M does not halt, then M^ will not halt either

• As a result, M^ either accepts Æ or the infinite language S+

• Assuming there is an algorithm A for deciding whether or not 
L(M) is finite, we could apply it to M^, which would give us a 
solution to the halting problem

• But this contradicts previous results that have established that 
the halting problem is undecidable
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The Undecidability of the “L(M) is Finite”
Problem
• Figure 12.6 illustrates the process used to establish the result 

that the “L(M) is finite” question is undecidable
• After an algorithm generates M^, the presumed finiteness 

algorithm A would be applied to M^, resulting in a solution to 
the halting problem, which is impossible

The Post Correspondence Problem
• Given two sequences of n strings on some alphabet S, for 

instance

A = w1, w2, …, wn and B = v1, v2, …, vn

there is a Post correspondence solution (PC solution) for the 

pair (A, B) if  there is a nonempty sequence of integers i, j, …, k, 

such that wiwj…wk = vivj…vk

• As shown in Example 12.5, assume A and B consist of

w1 = 11, w2, = 100, w3 = 111 and v1 = 111, v2, = 001, v3 = 11

A PC solution for this instance of (A, B) exists, as shown below

The Undecidability of the Post 
Correspondence Problem
• The Post correspondence problem is to devise an algorithm 

that determines, for any (A, B) pair, whether or not there 
exists a PC solution
• For example, there is no PC solution if A and B consist of

w1 = 00, w2, = 001, w3 = 1000 and v1 = 0, v2, = 11, v3 = 011
• Theorem 12.7 states that there is no algorithm to decide if 

a solution sequence exists under all circumstances, so the 
Post correspondence problem is undecidable
• Although a proof of theorem 12.7 is quite lengthy, this very 

important result is crucial for showing the undecidability of 
various problems involving context-free languages

Undecidable Problems for Context-
Free Languages
• The Post correspondence problem is a convenient tool 

to study some questions involving context-free 
languages
• The following questions, among others, can be shown 

to be undecidable
• Given an arbitrary context-free grammar G, is G ambiguous?
• Given arbitrary context-free grammars G1 and G2, 

is L(G1) Ç L(G2) = Æ?
• Given arbitrary context-free grammars G1 and G2, 

is L(G1) = L(G2)?
• Given arbitrary context-free grammars G1 and G2, 

is L(G1) Í L(G2)?


