
11/26/18

1

Chapter
12

LIMITS OF
ALGORITHMIC
COMPUTATION

Learning Objectives
At the conclusion of the chapter, the student will be able
to:
• Explain and differentiate the concepts of computability and

decidability
• Define the Turing machine halting problem
• Discuss the relationship between the halting problem and

recursively enumerable languages
• Give examples of undecidable problems regarding Turing

machines to which the halting problem can be reduced
• Give examples of undecidable problems regarding

recursively enumerable languages
• Determine if there is a solution to an instance of the Post

correspondence problem
• Give examples of undecidable problems regarding context-

free languages

Computability and Decidability
• Are there questions which are clearly and precisely

stated, yet have no algorithmic solution?
• As stated in chapter 9, a function f is computable if there

exists a Turing machine that computes the value of f for
all arguments in its domain
• Since there may be a Turing machine that can compute f

for part of the domain, it is crucial to define the domain
of f precisely
• The concept of decidability applies to computations that

result in a “yes” or “no” answer: a problem is decidable
if there exists a Turing machine that gives the correct
answer for every instance in the domain

The Turing Machine Halting Problem
• The Turing machine halting problem can be stated as:

Given the description of a Turing machine M and an
input string w, does M perform a computation that
eventually halts?
• The domain of the problem is the set of all Turing

machines and all input strings w
• Any attempts to simulate the computation on a

universal Turing machine face the problem of not
knowing if/when M has entered an infinite loop
• By Theorem 12.1, there does not exist any Turing

machine that finds the correct answer in all instances;
the halting problem is therefore undecidable

11/26/18

2

The Halting Problem and Recursively
Enumerable Languages
• Theorem 12.2 states that, if the halting problem were

decidable, then every recursively enumerable language
would be recursive
• Assume that L is a recursively enumerable language and

M is a Turing machine that accepts L
• If H is a Turing machine that solves the halting problem,

then we can apply H to the accepting machine M
• If H concludes that M does not halt, then by definition the

input string is not in L
• If H concludes that M halts, then M will determine if the input

string is in L
• Consequently, we would have a membership algorithm

for L, but we know that one does not exist for some
recursively enumerable languages, therefore
contradicting our assumption that H exists

Reducing One Undecidable Problem
to Another
• A problem A is reduced to a problem B if the

decidability of A follows from the decidability of B
• An example is the state-entry problem: given any

Turing machine M and string w, decide whether
or not the state q is ever entered when M is
applied to w
• If we had an algorithm that solves the state-entry

problem, it could be used to solve the halting
problem
• However, because the halting problem is

undecidable, the state-entry problem must also
be undecidable

The Blank-Tape Halting Problem
• Given a Turing machine M, determine whether or

not M halts if started with a blank tape
• To show that the problem is undecidable,
• Given a machine M and input string w, construct from

M a new machine Mw that starts with a blank tape,
writes w on it, and acts like M
• Clearly, Mw will halt on a blank tape if and only if M

halts on w
• If we start with Mw and apply the blank-tape halting

problem algorithm to it, we would have an algorithm
for the halting problem
• Since the halting problem is known to be undecidable,

the same must be true for the blank-tape version

The Undecidability of the Blank-Tape
Halting Problem
• Figure 12.3 illustrates the process used to establish the result

that the blank-tape halting problem is undecidable
• After Mw is built, the presumed blank-tape halting problem

algorithm would be applied to Mw, yielding an algorithm for
the halting problem, which leads to a contradiction

11/26/18

3

Undecidable Problems for Recursively
Enumerable Languages
• As illustrated before, there is no membership

algorithm for recursively enumerable languages
• Recursively enumerable languages are so general

that most related questions are undecidable
• Usually, there is a way to reduce the halting

problem to questions regarding recursively
enumerable languages, such as
• Is the language generated by an unrestricted grammar

empty?
• Is the language accepted by a Turing machine finite?

Is the Language Generated by an
Unrestricted Grammar Empty?
• Given an unrestricted grammar G, determine whether

or not L(G) is empty
• To show that the problem is undecidable,

• Given a Turing machine M and string w, modify M to create a
new machine Mw, so that Mw saves its input on a special part
of its tape, and whenever it enters a final state, it accepts the
input only if the input is equal to w

• Construct a grammar Gw that generates L(Mw)
• Since L(Mw) = L(M) Ç { w }, L(Gw) is nonempty iff w Î L(M)
• Assuming there is an algorithm A for deciding whether or not

an arbitrary L(G) is empty, we could apply it to Gw, which
would give us a membership algorithm for any recursively
enumerable language

• But this contradicts previous results that have established
there is no such membership algorithm

The Undecidability of the “L(G) = Æ”
Problem
• Figure 12.5 illustrates the process used to establish the result

that the “L(G) = Æ” problem is undecidable
• After Gw is built, the presumed emptiness algorithm A would

be applied to Gw, giving a membership algorithm for
recursively enumerable languages, which is impossible

Is the Language Accepted by a Turing
Machine finite?
• Given a Turing machine M, determine whether or not

L(M) is finite
• To show that the problem is undecidable,

• Given a Turing machine M and string w, modify M to create a
new machine M^, so that if any halting state of M is reached,
M^ accepts all input

• Have M^ generate w on an unused portion of its tape and
perform the same computations as M, so that
• if M halts in any configuration, then M^ halts in a final state, and
• If M does not halt, then M^ will not halt either

• As a result, M^ either accepts Æ or the infinite language S+

• Assuming there is an algorithm A for deciding whether or not
L(M) is finite, we could apply it to M^, which would give us a
solution to the halting problem

• But this contradicts previous results that have established that
the halting problem is undecidable

11/26/18

4

The Undecidability of the “L(M) is Finite”
Problem
• Figure 12.6 illustrates the process used to establish the result

that the “L(M) is finite” question is undecidable
• After an algorithm generates M^, the presumed finiteness

algorithm A would be applied to M^, resulting in a solution to
the halting problem, which is impossible

The Post Correspondence Problem
• Given two sequences of n strings on some alphabet S, for

instance

A = w1, w2, …, wn and B = v1, v2, …, vn

there is a Post correspondence solution (PC solution) for the

pair (A, B) if there is a nonempty sequence of integers i, j, …, k,

such that wiwj…wk = vivj…vk

• As shown in Example 12.5, assume A and B consist of

w1 = 11, w2, = 100, w3 = 111 and v1 = 111, v2, = 001, v3 = 11

A PC solution for this instance of (A, B) exists, as shown below

The Undecidability of the Post
Correspondence Problem
• The Post correspondence problem is to devise an algorithm

that determines, for any (A, B) pair, whether or not there
exists a PC solution
• For example, there is no PC solution if A and B consist of

w1 = 00, w2, = 001, w3 = 1000 and v1 = 0, v2, = 11, v3 = 011
• Theorem 12.7 states that there is no algorithm to decide if

a solution sequence exists under all circumstances, so the
Post correspondence problem is undecidable
• Although a proof of theorem 12.7 is quite lengthy, this very

important result is crucial for showing the undecidability of
various problems involving context-free languages

Undecidable Problems for Context-
Free Languages
• The Post correspondence problem is a convenient tool

to study some questions involving context-free
languages
• The following questions, among others, can be shown

to be undecidable
• Given an arbitrary context-free grammar G, is G ambiguous?
• Given arbitrary context-free grammars G1 and G2,

is L(G1) Ç L(G2) = Æ?
• Given arbitrary context-free grammars G1 and G2,

is L(G1) = L(G2)?
• Given arbitrary context-free grammars G1 and G2,

is L(G1) Í L(G2)?

