AN INTRODUCTION T0

FORMAL
LANGUAGES anp

AUTOMATA

11/26/18

Learning Objectives
At the conclusion of the chapter, the student will be able
to:

. Explain and differentiate the concepts of computability and
decidability

* Define the Turing machine halting problem

* Discuss the relationship between the halting problem and
recursively enumerable languages

* Give examples of undecidable problems regarding Turing
machines to which the halting problem can be reduced

* Give examples of undecidable problems regarding
recursively enumerable languages

* Determine if there is a solution to an instance of the Post
correspondence problem

* Give examples of undecidable problems regarding context-
free languages

© Jeffrey Van Dasle/ShutterStock, Inc. Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company
wwwjblearning.com

Computability and Decidability

* Are there questions which are clearly and precisely
stated, yet have no algorithmic solution?

* As stated in chapter 9, a function fis computable if there
exists a Turing machine that computes the value of f for
all arguments in its domain

* Since there may be a Turing machine that can compute f
for part of the domain, it is crucial to define the domain
of f precisely

* The concept of decidability applies to computations that
result in a “yes” or “no” answer: a problem is decidable
if there exists a Turing machine that gives the correct
answer for every instance in the domain

© Joffrey Von Inc. C by & u ompany
wwwjblaarning.com

The Turing Machine Halting Problem

* The Turing machine halting problem can be stated as:
Given the description of a Turing machine M and an
input string w, does M perform a computation that
eventually halts?

* The domain of the problem is the set of all Turing
machines and all input strings w

* Any attempts to simulate the computation on a
universal Turing machine face the problem of not
knowing if/when M has entered an infinite loop

* By Theorem 12.1, there does not exist any Turing
machine that finds the correct answer in all instances;
the halting problem is therefore undecidable

© Joffrey Von Ine. C by Jones 1 any
‘wwwjblaarning.com

11/26/18

The Halting Problem and Recursively
Enumerable Languages

* Theorem 12.2 states that, if the halting problem were
decidable, then every recursively enumerable language
would be recursive

e Assume that L is a recursively enumerable language and
M is a Turing machine that accepts L

« If H is a Turing machine that solves the halting problem,
then we can apply H to the accepting machine M
* If H concludes that M does not halt, then by definition the
input string is not in L
* If H concludes that M halts, then M will determine if the input
string isin L
* Consequently, we would have a membership algorithm
for L, but we know that one does not exist for some
recursively enumerable languages, therefore
contradicting our assumption that H exists

© Jeffrey Van Dacle/ShutterStock, Inc. Copyright © 2017 by Jones & Bartett Learning

Reducing One Undecidable Problem
to Another

* A problem A is reduced to a problem B if the
decidability of A follows from the decidability of B

* An example is the state-entry problem: given any
Turing machine M and string w, decide whether
or not the state q is ever entered when M is
applied to w

* If we had an algorithm that solves the state-entry
problem, it could be used to solve the halting
problem

* However, because the halting problem is
undecidable, the state-entry problem must also
be undecidable

© Jeffrey Van Dasle/ShutterStock, Inc. Copyright © 2017 by Jones & Bartett Learing

The Blank-Tape Halting Problem

* Given a Turing machine M, determine whether or
not M halts if started with a blank tape

* To show that the problem is undecidable,

* Given a machine M and input string w, construct from
M a new machine M,, that starts with a blank tape,
writes w on it, and acts like M

« Clearly, My, will halt on a blank tape if and only if M
halts on w

* If we start with M,, and apply the blank-tape halting
problem algorithm to it, we would have an algorithm
for the halting problem

* Since the halting problem is known to be undecidable,
the same must be true for the blank-tape version

© Jeffrey Van Daele/ShutterStock, Inc. Copyright © 2017 by Jones & Bartett Learning, LLC an Ascen

The Undecidability of the Blank-Tape
Halting Problem

* Figure 12.3 illustrates the process used to establish the result
that the blank-tape halting problem is undecidable

* After M, is built, the presumed blank-tape halting problem
algorithm would be applied to M,, yielding an algorithm for
the halting problem, which leads to a contradiction

s [Blank-cpe | Hats ~Halts

| halting

algorithm 4 v > Does not halt

halt

Muw || Generate | ¥
M

FIGURE 12.3 Algorithm for the halting problem.

© Jeffrey Van Daele/ShuttarStock, Inc. Copyright © 2017 by Jones & Bartett Learning, LLC an Ascend
it

11/26/18

Undecidable Problems for Recursively
Enumerable Languages

* As illustrated before, there is no membership
algorithm for recursively enumerable languages

* Recursively enumerable languages are so general
that most related questions are undecidable

* Usually, there is a way to reduce the halting
problem to questions regarding recursively
enumerable languages, such as

* Is the language generated by an unrestricted grammar
empty?
* Is the language accepted by a Turing machine finite?

© Jeffrey Van Daele/ShutterStock, Inc. Copyright © 2017 by Jones & Bartett Learning

Is the Language Generated by an
Unrestricted Grammar Empty?

* Given an unrestricted grammar G, determine whether
or not L(G) is empty

* To show that the problem is undecidable,

 Given a Turing machine M and string w, modify M to create a
new machine M,, so that M,, saves its input on a special part
of its tape, and whenever it enters a final state, it accepts the

input only if the input is equal to w

Construct a grammar G, that generates L(My,)

Since L(My) = L(M) N { w }, L(Gw) is nonempty iff w € L(M)
Assuming there is an algorithm A for deciding whether or not
an arbitrary L(G) is empty, we could apply it to G, which
would give us a membership algorithm for any recursively
enumerable language

But this contradicts previous results that have established
there is no such membership algorithm

© Jeffrey Van Dasle/ShuttarStock, Inc. Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Lear

The Undecidability of the “L(G) = &”
Problem

* Figure 12.5 illustrates the process used to establish the result
that the “L(G) = @ problem is undecidable

* After G is built, the presumed emptiness algorithm A would
be applied to G, giving a membership algorithm for
recursively enumerable languages, which is impossible

1 L(G,,) not empty —
Construct | Cu_| Emptiness [Sy
G, algorithm 4 ~we L(M)
L(G,,) empty .

FIGURE 12.5 Membership algorithm.

M

© Jeffrey Van Daele/ShutterStock, Inc. Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascand Learning Company

Is the Language Accepted by a Turing
Machine finite?

* Given a Turing machine M, determine whether or not
L(M) is finite
* To show that the problem is undecidable,

* Given a Turing machine M and string w, modify M to create a
new machine M4, so that if any halting state of M is reached,
MA accepts all input
Have M~ %enerate w on an unused portion of its tape and
perform the same computations as M, so that

« if M halts in any configuration, then M” halts in a final state, and

« If M does not halt, then M* will not halt either
As a result, M~ either accepts & or the infinite language *
Assuming there is an algorithm A for deciding whether or not

L(M) is finite, we could apply it to M, which would give us a
s<()lu)ti0n to the haﬁting pr%%l!em g

But this contradicts previous results that have established that
the halting problem is undecidable

© Jeffrey Van Daele/ShuttarStock, Inc. Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Lear

11/26/18

The Undecidability of the “L(M) is Finite”
Problem

* Figure 12.6 illustrates the process used to establish the result
that the “L(M) is finite” question is undecidable

* After an algorithm generates M*, the presumed finiteness
algorithm A would be applied to MA, resulting in a solution to
the halting problem, which is impossible

L(M) finite

M >Does not halt

Finiteness
algorithm 4

‘ Generate

Mw

FIGURE 12.6

»Halts
L(M) ot finite

© Jeffrey Van Daele/ShutterStock, Inc. Copyright © 2017 by Jones & Bartett Learning

The Post Correspondence Problem

* Given two sequences of n strings on some alphabet Z, for
instance
A=W, Wy, ..., W, and B=vy;,V,, .., V,
there is a Post correspondence solution (PC solution) for the

pair (A, B) if there is a nonempty sequence of integersi, j, ..., k,
such that wiwj...w; = vjv;...vi

¢ As shown in Example 12.5, assume A and B consist of
w; =11, w,, =100, w; =111 and v; =111, v,, =001, v = 11
A PC solution for this instance of (A, B) exists, as shown below

FIGU

© Jeffrey Van Dasle/ShutterStock, Inc. Copyright © 2017 by Jones & Bartett Learing

The Undecidability of the Post
Correspondence Problem

* The Post correspondence problem is to devise an algorithm
that determines, for any (A, B) pair, whether or not there
exists a PC solution

* For example, there is no PC solution if A and B consist of
w; =00, w,, = 001, w3 = 1000 and vy =0, v,, = 11, v3 = 011

* Theorem 12.7 states that there is no algorithm to decide if
a solution sequence exists under all circumstances, so the
Post correspondence problem is undecidable

* Although a proof of theorem 12.7 is quite lengthy, this very

important result is crucial for showing the undecidability of
various problems involving context-free languages

© Jeffrey Van Daele/ShutterStock, Inc. Copyright © 2017 by Jones & Bartett Learning, LLC an Ascend L
awwjbl

Undecidable Problems for Context-
Free Languages

* The Post correspondence problem is a convenient tool
to study some questions involving context-free
languages

* The following questions, among others, can be shown
to be undecidable

* Given an arbitrary context-free grammar G, is G ambiguous?
* Given arbitrary context-free grammars G; and G,
is L(Gl) N L(Gz) =
* Given arbitrary context-free grammars G; and G,
is L(Gl) = L(Gz)?
* Given arbitrary context-free grammars G; and G,
is L(G1) c L(Gy)?

© Joffrey Van Daele/ShuttarStock, Inc. Copyright © 2017 by Jones & Bartett L

