

The Standard Turing Machine

- A standard Turing machine has unlimited storage in the form of a tape consisting of an infinite number of cells, with each cell storing one symbol
- The read-write head can travel in both directions, processing one symbol per move
- A deterministic control function causes the machine to change states and possibly overwrite the tape contents
- Input string is surrounded by blanks, so the input alphabet is considered a proper subset of the tape alphabet

Diagram of a Standard Turing Machine

In a standard Turing machine, the tape acts as the input, output, and storage medium.

Learning Objectives

At the conclusion of the chapter, the student will be able to:

- Describe the components of a standard Turing machine
- State whether an input string is accepted by a Turing machine
- Construct a Turing machine to accept a specific language
- Trace the operation of a Turing machine transducer given a sample input string
- Construct a Turing machine to compute a simple function
- State Turing's thesis and discuss the circumstantial evidence supporting it

Definition of a Turing Machine

- A Turing Machine is defined by:
- A finite set of internal states Q
- An input alphabet Σ
- A tape alphabet Γ
- A transition function δ
- A special symbol from Γ called the blank
- An initial state q_{0}
- A set of final states F
- Input to the transition function δ consists of the current state of the control unit and the current tape symbol
- Output of δ consists of a new state, new tape symbol, and location of the next symbol to be read (L or R)
- δ is a partial function, so that some (state, symbol) input combinations may be undefined

Sample Turing Machine Transition

- Example 9.1 presents the sample transition rule:

$$
\delta\left(q_{0}, a\right)=\left(q_{1}, d, R\right)
$$

- According to this rule, when the control unit is in state q_{0} and the tape symbol is a, the new state is q_{1}, the symbol d replaces a on the tape, and the read-write head moves one cell to the right

FIGURE 9.2 The situation (a) before the move and (b) after the move.

A Sample Turing Machine

- Example 9.2: Consider the Turing machine

$$
Q=\left\{q_{0}, q_{1}\right\}, \Sigma=\{a, b\}, \Gamma=\{a, b, \quad\}, F=\left\{q_{1}\right\}
$$

with initial state q_{0} and transition function given by:
$\delta\left(q_{0}, a\right)=\left(q_{0}, b, R\right)$
$\delta\left(q_{0}, b\right)=\left(q_{0}, b, R\right)$
$\delta\left(q_{0}, \quad\right)=\left(q_{1}, \quad, L\right)$

- The machine starts in q_{0} and, as long as it reads a's, will replace them with b's and continue moving to the right, but b's will not be modified
- When a blank is found, the control unit switches states to q_{1} and moves one cell to the left
- The machine halts whenever it reaches a configuration for which δ is not defined (in this case, state q_{1})

Tracing the Operation of a Turing Machine

Figure 9.3 shows several stages of the operation of the Turing Machine in Example 9.2 as it processes a tape with initial contents aa

Transition Graphs for Turing Machines

- In a Turing machine transition graph, each edge is labeled with three items: current tape symbol, new tape symbol, and direction of the head move
- Figure 9.4 shows the transition graph for the Turing Machine in Example 9.2

A Turing Machine that Never Halts

- It is possible for a Turing machine to never halt on certain inputs, as is the case with Example 9.3 (below) and input string ab
- The machine runs forever -in an infinite loop- with the readwrite head moving alternately right and left, but making no modifications to the tape

The Language Accepted by a

Turing Machine

- Turing machines can be viewed as language accepters
- The language accepted by a Turing machine is the set of all strings which cause the machine to halt in a final state, when started in its standard initial configuration (q_{0}, leftmost input symbol)
- A string is rejected if
- The machine halts in a nonfinal state, or
- The machine never halts

Turing Machines as Transducers

- Turing machines provide an abstract model for digital computers, acting as a transducer that transforms input into output
- A Turing machine transducer implements a function that treats the original contents of the tape as its input and the final contents of the tape as its output
- A function is Turing-computable if it can be carried out by a Turing machine capable of processing all values in the function domain

A Sample Turing Machine
 Transducer

- Given two positive integers x and y in unary notation, separated by a single zero, the Turing machine below computes the function $x+y$
- The transducer has $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}$ with initial state q_{0} and final state q_{4}
- The defined values of the transition function are

$\delta\left(q_{0}, 1\right)=\left(q_{0}, 1, R\right)$	$\delta\left(q_{0}, 0\right)=\left(q_{1}, 1, R\right)$
$\delta\left(q_{1}, 1\right)=\left(q_{1}, 1, R\right)$	$\delta\left(q_{1},\right)=\left(q_{2},, L\right)$
$\delta\left(q_{2}, 1\right)=\left(q_{3}, 0, L\right)$	$\delta\left(q_{3}, 1\right)=\left(q_{3}, 1, L\right)$
$\delta\left(q_{3},\right)=\left(q_{4}, R\right)$	

When the machine halts, the read-write head is positioned on the leftmost symbol of the unary representation of $x+y$

Turing's Thesis

- How powerful are Turing machines?
- Turing's Thesis contends that any computation carried out by mechanical means can be performed by some Turing machine
- An acceptance of Turing's Thesis leads to a definition of an algorithm:
An algorithm for a function $f: D \rightarrow R$ is a Turing machine M, which given any $d \in D$ on its tape, eventually halts with the correct answer $f(d) \in R$ on its tape

Combining Turing Machines

- By combining Turing Machines that perform simple tasks, complex algorithms can be implemented
- For example, assume the existence of a machine to compare two numbers (comparer), one to add two numbers (adder), and one to erase the input (eraser)
- Figure 9.8 shows the diagram of a Turing Machine that computes the function $f(x, y)=x+y$ (if $x \geq y$), 0 (if $x<y$)

FIGURE 9.8

Evidence Supporting Turing's Thesis

- Anything that can be done on any existing digital computer can also be done by a Turing machine
- No one has yet been able to suggest a problem, solvable by what we intuitively consider an algorithm, for which a Turing machine program cannot be written
- Alternative models have been proposed for mechanical computation, but none of them is more powerful than the Turing machine model

