

Learning Objectives

At the conclusion of the chapter, the student will be able to:

- Describe the components of a standard Turing machine
- State whether an input string is accepted by a Turing machine
- Construct a Turing machine to accept a specific language
- Trace the operation of a Turing machine transducer given a sample input string
- Construct a Turing machine to compute a simple function
- State Turing's thesis and discuss the circumstantial evidence supporting it

© Jeffrey Van Daele/ShutterStock, Inc. Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Compan www.ibleaming.com

The Standard Turing Machine

- A standard Turing machine has unlimited storage in the form of a tape consisting of an infinite number of
- cells, with each cell storing one symbolThe read-write head can travel in both directions, processing one symbol per move
- A deterministic control function causes the machine to change states and possibly overwrite the tape contents
- Input string is surrounded by blanks, so the input alphabet is considered a proper subset of the tape alphabet

© Jeffrey Van Daele/ShutterStock, Inc. Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company www.ibleaming.com

Diagram of a Standard Turing Machine

In a standard Turing machine, the tape acts as the input, output, and storage medium.

Definition of a Turing Machine

• A Turing Machine is defined by:

- A finite set of internal states Q
- An input alphabet Σ A tape alphabet Γ
- A transition function $\boldsymbol{\delta}$
- A special symbol from Γ called the blank
- An initial state q₀
 A set of final states F
- Input to the transition function $\boldsymbol{\delta}$ consists of the current state of the control unit and the current tape symbol
- Output of δ consists of a new state, new tape symbol, and location of the next symbol to be read (L or R)
- δ is a partial function, so that some (state, symbol) input combinations may be undefined

© Jeffrey Van Daelw/ShutterStock, Inc. Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company www.jbiaaming.com

Sample Turing Machine Transition • Example 9.1 presents the sample transition rule: $\delta(q_0, a) = (q_1, d, R)$ According to this rule, when the control unit is in state q₀ and the tape symbol is a, the new state is q1, the symbol d replaces a on the tape, and the read-write head moves one cell to the right Internal state q_0 Internal state q_1 d b c a b c FIGURE 9.2 The situation (a) before the move and (b) after the move © Jeffrey Van Daele/ShutterStock, Inc. Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company www.jbiaaming.com

A Sample Turing Machine

- Example 9.2: Consider the Turing machine $Q = \{ q_0, q_1 \}, \Sigma = \{ a, b \}, \Gamma = \{ a, b, \}, F = \{ q_1 \}$ with initial state q₀ and transition function given by:
- $\delta(q_0, a) = (q_0, b, R)$
- $\delta(q_0, b) = (q_0, b, R)$ $\delta(q_0,) = (q_1, , L)$
- The machine starts in $q_0 and,$ as long as it reads a's, will replace them with b's and continue moving to the right, but b's will not be modified
- When a blank is found, the control unit switches states to q_1 and moves one cell to the left
- The machine halts whenever it reaches a configuration for which δ is not defined (in this case, state q₁)

© Jeffrey Van Daele/ShutterStock, Inc. Copyright © 2017 by Jones & Bertlett Learning, LLC an Ascend Learning Company www.jbiaarning.com

© Jeffrey Van Daele/ShutterStock, Inc. Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company waar iNaaming company

The Language Accepted by a Turing Machine

- Turing machines can be viewed as language accepters
- The language accepted by a Turing machine is the set of all strings which cause the machine to halt in a final state, when started in its standard initial configuration (q₀, leftmost input symbol)

© Jeffrey Van Daele/ShutterStock, Inc. Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company waw.iblearning.com

- · A string is rejected if
 - The machine halts in a nonfinal state, or
 - The machine never halts

Turing Machines as Transducers

- Turing machines provide an abstract model for digital computers, acting as a transducer that transforms input into output
- A *Turing machine transducer* implements a function that treats the original contents of the tape as its input and the final contents of the tape as its output
- A function is *Turing-computable* if it can be carried out by a Turing machine capable of processing all values in the function domain

© Jeffrey Van Daele/ShutterStock, Inc. Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

© Jeffrey Van DaelerShutterStock, Inc. Copyright © 2017 by Jones & Bartlett Learning, LLC an Asc

end Learning Compan

Turing's Thesis

- How powerful are Turing machines?
- Turing's Thesis contends that any computation carried out by mechanical means can be performed by some Turing machine
- · An acceptance of Turing's Thesis leads to a definition of an algorithm:

An *algorithm* for a function $f : D \rightarrow R$ is a Turing machine M, which given any $d \in D$ on its tape, eventually halts with the correct answer $f(d) \in R$ on its tape

Evidence Supporting Turing's Thesis

- · Anything that can be done on any existing digital computer can also be done by a Turing machine
- No one has yet been able to suggest a problem, solvable by what we intuitively consider an algorithm, for which a Turing machine program cannot be written
- Alternative models have been proposed for mechanical computation, but none of them is more powerful than the Turing machine model

© Jeffrey Van Daele/ShutterStock, Inc. Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company