
11/26/18

1

Chapter 7
PUSHDOWN AUTOMATA

Learning Objectives
At the conclusion of the chapter, the student will be able
to:
• Describe the components of a nondeterministic

pushdown automaton
• State whether an input string is accepted by a

nondeterministic pushdown automaton
• Construct a pushdown automaton to accept a specific

language
• Given a context-free grammar in Greibach normal form,

construct the corresponding pushdown automaton
• Describe the differences between deterministic and

nondeterministic pushdown automata
• Describe the differences between deterministic and

general context-free languages

Nondeterministic Pushdown
Automata
• A pushdown automaton is a model of computation

designed to process context-free languages
• Pushdown automata use a stack as storage

mechanism

Nondeterministic Pushdown
Automata
• A nondeterministic pushdown accepter (npda) is defined by:

• A finite set of states Q
• An input alphabet Σ
• A stack alphabet Γ
• A transition function δ
• An initial state q0

• A stack start symbol z
• A set of final states F

• Input to the transition function δ consists of a triple
consisting of a state, input symbol (or l), and the symbol at
the top of stack
• Output of δ consists of a new state and new top of stack
• Transitions can be used to model common stack operations

11/26/18

2

Sample npda Transitions

• Example 7.1 presents the sample transition rule:

δ(q1, a, b) = {(q2, cd), (q3, l)}

• According to this rule, when the control unit is in
state q1, the input symbol is a, and the top of the
stack is b, two moves are possible:
• New state is q2 and the symbols cd replace b on the stack
• New state is q3 and b is simply removed from the stack

• If a particular transition is not defined, the
corresponding (state, symbol, stack top)
configuration represents a dead state

A Sample Nondeterministic
Pushdown Accepter
• Example 7.2: Consider the npda

Q = { q0, q1, q2, q3 }, Σ = { a, b }, G= { 0, 1 }, z = 0, F = {q3}

with initial state q0 and transition function given by:
δ(q0, a, 0) = { (q1, 10), (q3, l) }
δ(q0, l, 0) = { (q3, l) }
δ(q1, a, 1) = { (q1, 11) }
δ(q1, b, 1) = { (q2, l) }
δ(q2, b, 1) = { (q2, l) }
δ(q2, l, 0) = { (q3, l) }
• As long as the control unit is in q1, a 1 is pushed onto the

stack when an a is read
• The first b causes control to shift to q2, which removes a

symbol from the stack whenever a b is read

Transition Graphs
• In the transition graph for a npda, each edge is

labeled with the input symbol, the stack top, and the
string that replaces the top of the stack
• The graph below represents the npda in Example 7.2:

Instantaneous Descriptions

• To trace the operation of a npda, we must keep track of
the current state of the control unit, the stack contents,
and the unread part of the input string
• An instantaneous description is a triplet (q, w, u) that

describes state, unread input symbols, and stack
contents (with the top as the leftmost symbol)
• A move is denoted by the symbol ˫
• A partial trace of the npda in Example 7.2 with input

string ab is
(q0, ab, 0) ˫ (q1, b, 10) ˫ (q2, l, 0) ˫ (q3, l, l)

11/26/18

3

The Language Accepted by a
Pushdown Automaton
• The language accepted by a npda is the set of all

strings that cause the npda to halt in a final state,
after starting in q0 with an empty stack.
• The final contents of the stack are irrelevant
• As was the case with nondeterministic automata,

the string is accepted if any of the computations
cause the npda to halt in a final state
• The npda in example 7.2 accepts the language

{anbn: n ≥ 0} È { a }

Pushdown Automata and
Context-Free Languages
• Theorem 7.1 states that, for any context-free

language L, there is a npda to recognize L
• Assuming that the language is generated by a

context-free grammar in Greibach normal form, the
constructive proof provides an algorithm that can be
used to build the corresponding npda
• The resulting npda simulates grammar derivations by

keeping variables on the stack while making sure
that the input symbol matches the terminal on the
right side of the production

Construction of a Npda from a
Grammar in Greibach Normal
Form• The npda has Q = { q0, q1, qF }, input alphabet equal

to the grammar terminal symbols, and stack
alphabet equal to the grammar variables
• The transition function contains the following:
• A rule that pushes S on the stack and switches control to

q1 without consuming input
• For every production of the form A ® aX, a rule

δ (q1, a, A) = (q1, X)
• A rule that switches the control unit to the final state

when there is no more input and the stack is empty

Sample Construction of a NPDA
from a Grammar
• Example 7.6 presents the grammar below, in Greibach normal form

S ® aSA | a
A ® bB
B ® b
• The corresponding npda has Q = { q0, q1, q2 } with initial state q0 and

final state q2

• The start symbol S is placed on the stack with the transition
δ(q0, l, z) = { (q1, Sz) }

• The grammar productions are simulated with the transitions
δ(q1, a, S) = { (q1, SA), (q1, l) }
δ(q1, b, A) = { (q1, B) }
δ(q1, b, B) = { (q1, l) }

• A final transition places the control unit in its final state when the
stack is empty
δ(q1, l, z) = { (q2, l) }

11/26/18

4

Deterministic Pushdown
Automata
• A deterministic pushdown accepter (dpda) never has

a choice in its move
• Restrictions on dpda transitions:
• Any (state, symbol, stack top) configuration may have at

most one (state, stack top) transition definition
• If the dpda defines a transition for a particular (state, λ,

stack top) configuration, there can be no input-consuming
transitions out of state s with a at the top of the stack

• Unlike the case for finite automata, a l-transition
does not necessarily mean the automaton is
nondeterministic

Example of a Deterministic
Pushdown Automaton
• Example 7.10 presents a dpda to accept the language

L = { anbn: n ≥ 0 }
• The dpda has Q = { q0, q1, q2 }, input alphabet { a, b },

stack alphabet { 0, 1 }, z = 0, and q0 as its initial and
final state
• The transition rules are

δ(q0, a, 0) = { (q1, 10) }
δ(q1, a, 1) = { (q1, 11) }
δ(q1, b, 1) = { (q2, l) }
δ(q2, b, 1) = { (q2, l) }
δ(q2, l, 0) = { (q0, l) }

Deterministic Context-Free
Languages
• A context-free language L is deterministic if there is a

dpda to accept L
• Sample deterministic context-free languages:

{ anbn: n ≥ 0 }
{ wxwR: w Î {a, b}*}

• Deterministic and nondeterministic pushdown
automata are not equivalent: there are some
context-free languages for which no dpda can be
built

