

Learning Objectives

At the conclusion of the chapter, the student will be able to:

- Describe the components of a nondeterministic pushdown automaton
- State whether an input string is accepted by a nondeterministic pushdown automaton
- Construct a pushdown automaton to accept a specific language
- Given a context-free grammar in Greibach normal form, construct the corresponding pushdown automaton

© Jeffrey Van Daele/ShutterStock, Inc. Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Compan www.jblearning.com

- Describe the differences between deterministic and nondeterministic pushdown automata
- Describe the differences between deterministic and general context-free languages

Nondeterministic Pushdown Automata A pushdown automaton is a model of computation designed to process context-free languages Pushdown automata use a stack as storage mechanism

FIGURE 7.1

© Jeffrey Van Daele/ShutterStock, Inc. Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Compan www.jblearning.com

Nondeterministic Pushdown Automata

- A nondeterministic pushdown accepter (npda) is defined by: • A finite set of states Q
 - An input alphabet Σ
 - A stack alphabet F
 - A transition function δ An initial state q_0
 - An initial state q₀
 A stack start symbol z
 - A set of final states F
- Input to the transition function δ consists of a triple consisting of a state, input symbol (or λ), and the symbol at the top of stack
- Output of δ consists of a new state and new top of stack
- Transitions can be used to model common stack operations

© Jeffrey Van Daele/ShutterStock, Inc. Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company www.iblearning.com

1

Sample npda Transitions

- Example 7.1 presents the sample transition rule: $\delta(q_1, a, b) = \{(q_2, cd), (q_3, \lambda)\}$
- According to this rule, when the control unit is in state q₁, the input symbol is a, and the top of the stack is b, two moves are possible:
 - New state is q_2 and the symbols cd replace b on the stack - New state is q_3 and b is simply removed from the stack

© Jeffrey Van Daele/ShutterStock, Inc. Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company www.jblearning.com

• If a particular transition is not defined, the corresponding (state, symbol, stack top) configuration represents a *dead* state

A Sample Nondeterministic Pushdown Accepter

Example 7.2: Consider the npda Q = { q₀, q₁, q₂, q₃}, Σ = { a, b }, Γ= { 0, 1 }, z = 0, F = {q₃} with initial state q₀ and transition function given by: δ(q₀, a, 0) = { (q₁, 10), (q₃, λ) } δ(q₁, a, 1) = { (q₁, 11) } δ(q₁, b, 1) = { (q₂, λ) } δ(q₂, b, 1) = { (q₂, λ) } δ(q₂, λ, 0) = { (q₃, λ) }
As long as the control unit is in q₁, a 1 is pushed onto the stack when an a is read
The first b causes control to shift to q₂, which removes a symbol from the stack whenever a b is read

The Language Accepted by a Pushdown Automaton

- The language accepted by a npda is the set of all strings that cause the npda to halt in a final state, after starting in q_0 with an empty stack.
- The final contents of the stack are irrelevant
- As was the case with nondeterministic automata, the string is accepted if any of the computations cause the npda to halt in a final state
- The npda in example 7.2 accepts the language $\{a^nb^n: n \ge 0\} \cup \{a\}$

© Jeffrey Van Daele/ShutterStock, Inc. Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company www.jblearning.com

Pushdown Automata and

Context-Free Languages

- Theorem 7.1 states that, for any context-free language L, there is a npda to recognize L
- · Assuming that the language is generated by a context-free grammar in Greibach normal form, the constructive proof provides an algorithm that can be used to build the corresponding npda
- The resulting npda simulates grammar derivations by keeping variables on the stack while making sure that the input symbol matches the terminal on the right side of the production

© Jeffrey Van Daele/ShutterStock, Inc. Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Compan www.ibleaming.com

Construction of a Npda from a Grammar in Greibach Normal

- The npda has $Q = \{q_0, q_1, q_F\}$, input alphabet equal to the grammar terminal symbols, and stack alphabet equal to the grammar variables
- The transition function contains the following:
 - A rule that pushes S on the stack and switches control to q₁ without consuming input
 - For every production of the form A \rightarrow aX, a rule $\delta(q_1, a, A) = (q_1, X)$
 - A rule that switches the control unit to the final state when there is no more input and the stack is empty

© Jeffrey Van Daele/ShutterStock, Inc. Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company www.ibleaming.com

Sample Construction of a NPDA from a Grammar

- Example 7.6 presents the grammar below, in Greibach normal form $S \rightarrow aSA \mid a$
- $A \rightarrow bB$ $B \rightarrow b$
- The corresponding npda has Q = { $q_0, q_{\rm L}, q_2$ } with initial state q_0 and final state q_2
- The start symbol S is placed on the stack with the transition $\delta(q_0, \lambda, z) = \{ (q_1, Sz) \}$
- · The grammar productions are simulated with the transitions $\begin{array}{l} \delta(q_1,\,a,\,S) \;=\; \{\; (q_1,\,SA),\, (q_1,\,\lambda)\;\} \\ \delta(q_1,\,b,\,A) \;=\; \{\; (q_1,\,B)\;\} \\ \delta(q_1,\,b,\,B) \;=\; \{\; (q_1,\,\lambda)\;\} \end{array}$
- A final transition places the control unit in its final state when the stack is empty $\delta(q_1, \lambda, z) = \{ (q_2, \lambda) \}$

© Jeffrey Van Daele/ShutterStock, Inc. Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company waw illuaring com

Deterministic Pushdown

Automata

- A deterministic pushdown accepter (dpda) never has a choice in its move
- Restrictions on dpda transitions:
 - Any (state, symbol, stack top) configuration may have at most one (state, stack top) transition definition
 - If the dpda defines a transition for a particular (state, λ , stack top) configuration, there can be no input-consuming transitions out of state s with a at the top of the stack
- Unlike the case for finite automata, a λ-transition does not necessarily mean the automaton is nondeterministic

© Jeffrey Van Daele/ShutterStock, Inc. Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Compan waw.ibleaming.com

Example of a Deterministic Pushdown Automaton

- Example 7.10 presents a dpda to accept the language $L = \{ a^n b^n \colon n \ge 0 \}$
- The dpda has Q = { q_0,q_1,q_2 }, input alphabet { a, b }, stack alphabet { 0, 1 }, z = 0, and q_0 as its initial and final state

ck, Inc. Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Compan www.iblearning.com

- The transition rules are $\delta(q_0, a, 0) = \{ (q_1, 10) \}$ $\delta(q_1, a, 1) = \{ (q_1, 11) \}$
- $\delta(q_1, b, 1) = \{ (q_2, \lambda) \}$
- $\delta(q_2, b, 1) = \{ (q_2, \lambda) \}$
- $\delta(q_2, \lambda, 0) = \{ (q_0, \lambda) \}_{0 \text{ Jeffrey Van Daele/Shu}}$

Deterministic Context-Free Languages

- A context-free language L is *deterministic* if there is a dpda to accept L
- Sample deterministic context-free languages:

$\{a^nb^n: n \ge 0\}$

$\{ wxw^{R} : w \in \{a, b\}^{*} \}$

 Deterministic and nondeterministic pushdown automata are not equivalent: there are some context-free languages for which no dpda can be built

> D Jeffrey Van Daele/ShutterStock, Inc. Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Compan www.iblearning.com