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Chapter 5
CONTEXT-FREE LANGUAGES 

Learning Objectives
At the conclusion of the chapter, the student will be able 
to:
• Identify whether a particular grammar is context-free
• Discuss the relationship between regular languages and 

context-free languages
• Construct context-free grammars for simple languages
• Produce leftmost and rightmost derivations of a string 

generated by a context-free grammar
• Construct derivation trees for strings generated by a 

context-free grammar
• Show that a context-free grammar is ambiguous
• Rewrite a grammar to remove ambiguity

Context-Free Grammars
• Many useful languages are not regular
• Context-free grammars are very useful for the 

definition and processing of programming languages
• A context-free grammar has no restrictions on the 

right side of its productions, while the left side must 
be a single variable
• A language is context-free if it is generated by a 

context-free grammar
• Since regular grammars are context-free, the family of 

regular languages is a proper subset of the family of 
context-free languages

Context-Free Languages 
(Example 5.1)
• Consider the grammar

V = { S }, T = { a, b }, and productions 
S ® aSa | bSb | l
• Sample derivations:

S Þ aSa Þ aaSaa Þ aabSbaa Þ aabbaa
S Þ bSb Þ baSab Þ baab 

• The language generated by the grammar is
{ wwR: w Î { a, b }*}

(in other words, even-length palindromes in { a, b }*)
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Context-Free Languages 
(Example 5.4)
• Consider the grammar

V = { S }, T = { a, b }, and productions 
S ® aSb | SS | l
• Sample derivations:

S Þ aSb Þ aaSbb Þ aabb 
S Þ SS Þ aSbS Þ abS Þ abaSb Þ abab

• The language generated by the grammar is
{ w Î { a, b }*: na(w) = nb(w) and na(v) ≥ nb(v) }
(where v is any prefix of w)

Leftmost and Rightmost 
Derivations
• In a leftmost derivation, the leftmost variable in a 

sentential form is replaced at each step
• In a rightmost derivation, the rightmost variable in a 

sentential form is replaced at each step
• Consider the grammar from example 5.5:

V = { S, A, B }, T = { a, b }, and productions 
S ® aAB 
A ® bBb
B ® A | l
• The string abb has two distinct derivations:

• Leftmost: S Þ aAB Þ abBbB Þ abbB Þ abb
• Rightmost: S Þ aAB Þ aA Þ abBb Þ abb

Derivation Trees
• In a derivation tree or parse tree, 
• the root is labeled S
• internal nodes are labeled with a variable occurring on 

the left side of a production
• the children of a node contain the symbols on the 

corresponding right side of a production
• For example, given the production A ® abABc, 

Figure 5.1 shows the corresponding partial 
derivation tree 

Derivation Trees (Cont.)
• The yield of a derivation tree is the string of terminals 

produced by a leftmost depth-first traversal of the tree
• For example, using the grammar from example 5.5, the 

derivation tree below yields the string abbbb 



11/26/18

3

Sentential Forms and Derivation 
Trees
• Theorem 5.1 states that, given a context-free 

grammar G, for every string w in L(G), there 
exists a derivation tree whose yield is w
• The converse is also true: the yield of any 

derivation tree formed with productions from G 
is in L(G)
• Derivation trees show which productions are 

used in obtaining a sentence, but do not give the 
order of their application

Parsing and Membership
• The parsing problem: given a grammar G and a 

string w, find a sequence of derivations using 
the productions in G to produce w
• Can be solved in an exhaustive, top-down, but 

not very efficient fashion
• Theorem 5.2: Exhaustive parsing is guaranteed 

to yield all strings eventually, but may fail to 
stop for strings not in L(G), unless we restrict 
the productions in the grammar to avoid the 
forms A ®l and A ® B

Parsing and Ambiguity
• A grammar G is ambiguous if there is some string w 

in L(G) for which more than one derivation tree exists
• The grammar with productions S à aSb | SS | λ is 

ambiguous, since the string aabb has two derivation 
trees, as shown below

Ambiguity in Programming Languages
• Consider the grammar below, designed to generate 

simple arithmetic expressions such as (a+b)*c and 
a*b+c
V = { E, I }, T = { a, b, c, +, *, (, ) }, and productions 
E ® I
E ® E+E
E ® E*E
E ® (E)
I  ® a | b | c
• The grammar is ambiguous because strings such as 

a+b*c have more than one derivation tree, as shown 
in Figure 5.5  
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Derivation Trees from Ambiguous 
Grammar

Resolving Ambiguity
• Ambiguity can often be removed by rewriting the 

grammar so that only one parsing is possible 

• Consider the grammar

V = { E, T, F, I }, T = { a, b, c, +, *, (, ) }, and productions 

E ® T

T ® F

F ® I

E ® E+T

T ® T*F

F ® (E)

I  ® a | b | c

• As shown in Figure 5.6, only one derivation tree yields 
the string a+b*c

Derivation Tree for a+b*c Using
Unambiguous Grammar

Ambiguous Languages
• For some languages, it is always possible to find an 

unambiguous grammar, as shown in the previous 
example
• However, there are inherently ambiguous languages, 

for which every possible grammar is ambiguous
• Consider the language { anbnbm } È { anbmbm }, which 

is generated by the grammar
S ® S1 | S2
S1 ® S1c | A
A® aAb | l
S2 ® aS2 | B
B® bBc | l

• The grammar above (and every other equivalent 
grammar) is ambiguous, because any string of the 
form anbnbm has two distinct derivations


