
12/5/18

1

Chapter
11

A HIERARCHY OF
FORMAL LANGUAGES

AND AUTOMATA

Recursive and Recursively
Enumerable Languages

• A language L is recursively enumerable if there exists
a Turing machine that accepts it (as we have
previously stated, rejected strings cause the
machine to either not halt or halt in a nonfinal state)
• A language L is recursive if there exists a Turing

machine that accepts it and is guaranteed to halt on
every valid input string
• In other words, a language is recursive if and only if

there exists a membership algorithm for it

Unrestricted Grammars
• An unrestricted grammar has essentially no

restrictions on the form of its productions:
• Any variables and terminals on the left side, in any order
• Any variables and terminals on the right side, in any order
• The only restriction is that l is not allowed as the left side

of a production
• A sample unrestricted grammar has productions

S ® S1B
S1 ® aS1b
bB ® bbbB
aS1b ® aa
B ® l

Unrestricted Grammars and Recursively
Enumerable Languages
• Theorem 11.6: Any language generated by an

unrestricted grammar is recursively enumerable
• Theorem 11.7: For every recursively enumerable

language L, there exists an unrestricted grammar G
that generates L
• These two theorems establish the result that

unrestricted grammars generate exactly the family
of recursively enumerable languages, the largest
family of languages that can be generated or
recognized algorithmically

12/5/18

2

Context-Sensitive Grammars

• In a context-sensitive grammar, the only restriction is
that, for any production, length of the right side is at
least as large as the length of the left side
• Example 11.2 introduces a sample unrestricted

grammar with productions
S ® abc | aAbc
Ab ® bA
Ac ® Bbcc
bB ® Bb
aB ® aa | aaA

Characteristics of Context-Sensitive
Grammars
• An important characteristic of context-sensitive

grammars is that they are noncontracting, in the
sense that in any derivation, the length of
successive sentential forms can never decrease
• These grammars are called context-sensitive

because it is possible to specify that variables may
only be replaced in certain contexts
• For instance, in the grammar of Example 11.2,

variable A can only be replaced if it is followed by
either b or c

Context-Sensitive Languages and Linear
Bounded Automata

• Theorem 11.8 states that, for every context-
sensitive language L not including l, there is a
linear bounded automaton that recognizes L
• Theorem 11.9 states that, if a language L is

accepted by a linear bounded automaton M, then
there is a context-sensitive grammar that
generates L
• These two theorems establish the result that

context-sensitive grammars generate exactly the
family of languages accepted by linear bounded
automata, the context-sensitive languages

The Chomsky Hierarchy
• The linguist Noam Chomsky summarized the relationship

between language families by classifying them into four
language types, type 0 to type 3
• This classification, which became known as the Chomsky

Hierarchy, is illustrated in Figure 11.3

12/5/18

3

An Extended Hierarchy
• We have studied additional language families and their

relationships to those in the Chomsky Hierarchy
• By including deterministic context-free languages and recursive

languages, we obtain the extended hierarchy in Figure 11.4
Chapter

12
LIMITS OF

ALGORITHMIC
COMPUTATION

Computability and Decidability
• Are there questions which are clearly and precisely

stated, yet have no algorithmic solution?
• As stated in chapter 9, a function f is computable if there

exists a Turing machine that computes the value of f for
all arguments in its domain
• Since there may be a Turing machine that can compute f

for part of the domain, it is crucial to define the domain
of f precisely
• The concept of decidability applies to computations that

result in a “yes” or “no” answer: a problem is decidable
if there exists a Turing machine that gives the correct
answer for every instance in the domain

The Turing Machine Halting Problem
• The Turing machine halting problem can be stated as:

Given the description of a Turing machine M and an
input string w, does M perform a computation that
eventually halts?
• The domain of the problem is the set of all Turing

machines and all input strings w
• Any attempts to simulate the computation on a

universal Turing machine face the problem of not
knowing if/when M has entered an infinite loop
• By Theorem 12.1, there does not exist any Turing

machine that finds the correct answer in all instances;
the halting problem is therefore undecidable

12/5/18

4

The Halting Problem and Recursively
Enumerable Languages
• Theorem 12.2 states that, if the halting problem were

decidable, then every recursively enumerable language
would be recursive
• Assume that L is a recursively enumerable language and

M is a Turing machine that accepts L
• If H is a Turing machine that solves the halting problem,

then we can apply H to the accepting machine M
• If H concludes that M does not halt, then by definition the

input string is not in L
• If H concludes that M halts, then M will determine if the input

string is in L
• Consequently, we would have a membership algorithm

for L, but we know that one does not exist for some
recursively enumerable languages, therefore
contradicting our assumption that H exists

Reducing One Undecidable Problem
to Another
• A problem A is reduced to a problem B if the

decidability of A follows from the decidability of B
• An example is the state-entry problem: given any

Turing machine M and string w, decide whether
or not the state q is ever entered when M is
applied to w
• If we had an algorithm that solves the state-entry

problem, it could be used to solve the halting
problem
• However, because the halting problem is

undecidable, the state-entry problem must also
be undecidable

Undecidable Problems for Recursively
Enumerable Languages

• As illustrated before, there is no membership
algorithm for recursively enumerable languages
• Recursively enumerable languages are so general

that most related questions are undecidable
• Usually, there is a way to reduce the halting

problem to questions regarding recursively
enumerable languages, such as
• Is the language generated by an unrestricted grammar

empty?
• Is the language accepted by a Turing machine finite?

