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Chapter 
11

A HIERARCHY OF 
FORMAL LANGUAGES 

AND AUTOMATA

Recursive and Recursively 
Enumerable Languages

• A language L is recursively enumerable if there exists 
a Turing machine that accepts it (as we have 
previously stated, rejected strings cause the 
machine to either not halt or halt in a nonfinal state)
• A language L is recursive if there exists a Turing 

machine that accepts it and is guaranteed to halt on 
every valid input string
• In other words, a language is recursive if and only if 

there exists a membership algorithm for it

Unrestricted Grammars
• An unrestricted grammar has essentially no 

restrictions on the form of its productions:
• Any variables and terminals on the left side, in any order
• Any variables and terminals on the right side, in any order
• The only restriction is that l is not allowed as the left side 

of a production
• A sample unrestricted grammar has productions

S ® S1B 
S1 ® aS1b
bB ® bbbB
aS1b ® aa 
B ® l

Unrestricted Grammars and Recursively 
Enumerable Languages
• Theorem 11.6: Any language generated by an 

unrestricted grammar is recursively enumerable
• Theorem 11.7: For every recursively enumerable 

language L, there exists an unrestricted grammar G 
that generates L
• These two theorems establish the result that 

unrestricted grammars generate exactly the family 
of recursively enumerable languages, the largest 
family of languages that can be generated or 
recognized algorithmically
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Context-Sensitive Grammars

• In a context-sensitive grammar, the only restriction is 
that, for any production, length of the right side is at 
least as large as the length of the left side
• Example 11.2 introduces a sample unrestricted 

grammar with productions
S ® abc | aAbc 
Ab ® bA
Ac ® Bbcc
bB ® Bb 
aB ® aa | aaA 

Characteristics of Context-Sensitive 
Grammars
• An important characteristic of context-sensitive 

grammars is that they are noncontracting, in the 
sense that in any derivation, the length of 
successive sentential forms can never decrease
• These grammars are called context-sensitive 

because it is possible to specify that variables may 
only be replaced in certain contexts
• For instance, in the grammar of Example 11.2, 

variable A can only be replaced if it is followed by 
either b or c

Context-Sensitive Languages and Linear 
Bounded Automata

• Theorem 11.8 states that, for every context-
sensitive language L not including l, there is a 
linear bounded automaton that recognizes L
• Theorem 11.9 states that, if a language L is 

accepted by a linear bounded automaton M, then 
there is a context-sensitive grammar that 
generates L
• These two theorems establish the result that 

context-sensitive grammars generate exactly the 
family of languages accepted by linear bounded 
automata, the context-sensitive languages

The Chomsky Hierarchy
• The linguist Noam Chomsky summarized the relationship 

between language families by classifying them into four 
language types, type 0 to type 3 
• This classification, which became known as the Chomsky 

Hierarchy, is illustrated in Figure 11.3
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An Extended Hierarchy
• We have studied additional language families and their 

relationships to those in the Chomsky Hierarchy
• By including deterministic context-free languages and recursive 

languages, we obtain the extended hierarchy in Figure 11.4
Chapter 

12
LIMITS OF 

ALGORITHMIC 
COMPUTATION

Computability and Decidability
• Are there questions which are clearly and precisely 

stated, yet have no algorithmic solution?
• As stated in chapter 9, a function f is computable if there 

exists a Turing machine that computes the value of f for 
all arguments in its domain
• Since there may be a Turing machine that can compute f

for part of the domain, it is crucial to define the domain 
of f precisely
• The concept of decidability applies to computations that 

result in a “yes” or  “no” answer: a problem is decidable
if there exists a Turing machine that gives the correct 
answer for every instance in the domain

The Turing Machine Halting Problem
• The Turing machine halting problem can be stated as: 

Given the description of a Turing machine M and an 
input string w, does M perform a computation that 
eventually halts?
• The domain of the problem is the set of all Turing 

machines and all input strings w
• Any attempts to simulate the computation on a 

universal Turing machine face the problem of not 
knowing if/when M has entered an infinite loop
• By Theorem 12.1, there does not exist any Turing 

machine that finds the correct answer in all instances; 
the halting problem is therefore undecidable
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The Halting Problem and Recursively 
Enumerable Languages
• Theorem 12.2 states that, if the halting problem were 

decidable, then every recursively enumerable language 
would be recursive
• Assume that L is a recursively enumerable language and 

M is a Turing machine that accepts L
• If H is a Turing machine that solves the halting problem, 

then we can apply H to the accepting machine M
• If H concludes that M does not halt, then by definition the 

input string is not in L
• If H concludes that M halts, then M will determine if the input 

string is in L
• Consequently, we would have a membership algorithm 

for L, but we know that one does not exist for some 
recursively enumerable languages, therefore 
contradicting our assumption that H exists

Reducing One Undecidable Problem 
to Another
• A problem A is reduced to a problem B if the 

decidability of A follows from the decidability of B
• An example is the state-entry problem:  given any 

Turing machine M and string w, decide whether 
or not the state q is ever entered when M is 
applied to w
• If we had an algorithm that solves the state-entry 

problem, it could be used to solve the halting 
problem
• However, because the halting problem is 

undecidable, the state-entry problem must also 
be undecidable

Undecidable Problems for Recursively 
Enumerable Languages

• As illustrated before, there is no membership 
algorithm for recursively enumerable languages
• Recursively enumerable languages are so general 

that most related questions are undecidable
• Usually, there is a way to reduce the halting 

problem to questions regarding recursively 
enumerable languages, such as
• Is the language generated by an unrestricted grammar 

empty?
• Is the language accepted by a Turing machine finite? 


