The Virtual Machine for Quadruples

A simple machine architecture for testing compilers
Version 2.0 September, 2002

Introduction

The Virtual Machine for Quadruples, vmg, implements a small but usable set of operations commonly found in real hardware
architectures using an easily managed, AscCl1 based, “object” format. This combines portability with the ability to manually
examine and even modify “object” programs with asimple text editor. Program trace and memory dump functions are included
to aid debugging. It supports alimited set of datatypes: 16-bit integers, 32-bit floats, 16-bit pointers and character strings. A
system stack is used for subroutine linkage and local data storage.

File Format

Vmq “object” files are line-based Asci| files organized into two distinct sections: the global data section followed by the
instruction section. The global data section normally contains storage for all of the constants used in the program, as well as
globally accessible variables. The instruction section contains executable instructions in the form of “quadruples’: an
“operation code” followed by up to three operands. Lines maynot begin with optional white space, and comment lines arenot
permitted (although any line, including a no-op instruction, may have comments at the end of the active information).

Data Types

Supported data types are 16-bit decimal integers, single-precision decimal floats (expressed with a decimal point), character
strings in quotation marks (") whose length is the string length plus one (for aterminating \0'), and 2-byte addresses. |ntegers
and addresses must be aligned on an even storage boundary; floats must be aligned on a four-byte boundary. Integer, float and
string constants may be initialized by aline in the quadfile Data Section which begins with a decimal address and then gives the
constant value to be stored there. Aswith the rest of the quadfile, anything on the line following the data value is a comment.

Virtual Machine Operations

Each line of the code section represents one instruction. The following table summarizes the avail able operations. Note that
Operation Codes are @l a single character; in general, lower-case codes represent integer operations and upper-case represents
float operations. Thus, for example, ‘a isinteger addition, while ‘A’ isfloating point addition. Operands may be of several
types: addresses, interpreted as either anr-value or an I-value and specified in one of three addressing modes;labels which
specify the location of a quadruple assuming the first quadruple in the code section is number 0; orinteger constants, which are
simply signed 16-bit integers. All numeric quantities are always given in base 10.

Operation Operand 1 Operand 2 Operand 3

Add: ‘a or ‘A’ 03=01+02 |r-vaue integer or float r-value: integer or float I-value: integer or float
Subtract: ‘s or ‘S 03=01-02 [r-value: integer or float r-value: integer or float I-value: integer or float
Multiply: ‘m’ or ‘M’ 03 =01* 02 [r-value: integer or float r-value: integer or float |-value: integer or float
Divide: ‘d’ or ‘D’ 03=01/02 |r-vaue integer or float r-value: integer or float I-value: integer or float
Residue: ‘v’ 03=01%02 |r-vaue integer r-value: integer |-value: integer
Bitwise OR: ‘| 03=01|02 [r-value: integer r-value: integer |-value: integer
Bitwise AND: ‘&’ 03=01& 02 |r-vaue: integer r-value: integer |-value: integer

Jump if <:‘I" or ‘L’ 01<02? goto o3 r-value: integer or float r-value: integer or float Label (quad number)
Jumpif >:'g or ‘G’ 01>027? goto o3 r-value: integer or float r-value: integer or float Label (quad number)
Jump if =: '€ or ‘FE’ 01=027? goto o3 r-value: integer or float r-value: integer or float Label (quad number)
Identity: ‘i’ or ‘I’ 02=o0l r-value: integer or float I-value: integer or float

Byte copy: ‘=’ 02=o0l r-value: char I-value: char

Float: ‘F 02 = float(ol) |r-value: integer I-value: float

Int: ‘f’ 02 =int(ol) [r-value: float I-value: integer N/A
Bitwise NOT: ‘~’ 02=-~01 r-value: integer I-value: integer

Negate: ‘n’ or ‘N’ 02 =-01 r-value: integer or float I-value: integer or float

Call function: ‘¢’ 0l=02() I-value: integer or float or O| Label (quad number)

Initialize runtime environment: ‘$' Label: main entry address |int constant: size of globals N/A
Unconditional jump: ‘j’ goto ol Label: jump destination

Push parameter: ‘p’ or ‘P push (01) A function parameter N/A N/A

Pop n bytes: ‘' pop (01) int constant: n bytes to pop

Create stack frame: ‘# link -0l int constant: size of locals

Return from function: ‘/* return

Halt execution: ‘b’ halt N/A N/A N/A

No operation: *;’ noop

California State University, Stanislaus
Department of Computer Science
CS 4300 R. L. Zarling

Virtual Machine for Quadruples Documentation
Revised Fall, 2005
Page 1 of 3

R-Values and L-Values

The term “r-value” means an operand that will be evaluated and used in a calculation, while “I-value” is an operand that will be
evaluated to an address where a result can be stored. Thus, r-values can be given in any of the three addressing modesndirect,
direct, or immediate, while |-values must be either indirect or direct.

Direct addressing mode means that the address represents the place in memory where the operand is to be placed (I-value) or
retrieved from (r-value). You specify direct addressing by simply giving the address with no mode modifiers.

Indirect addressing mode means the operand points to a memory address where the actual effective address may be found. You
specify indirect mode by preceding the address with an “at” sign (@).

Immediate addressing mode means the address in the instruction is the data to be worked with. Y ou specify immediate mode
by preceding an address with a sharp sign (#). Immediate mode cannot be used for I-values. For floating point operands, the
immediate operand must contain a decimal point.

Base-Relative and Absolute Addressing

A local (stack-based) address needs to be interpreted as a base-relative offset; that is, it must be added to the base of the current
stack frame to find the actual memory location. Y ou may specify such an offset by preceding the address with aslash (/). Since
the processor stack grows downward, positive offsets point into the previous activation record and may be used to address
parameters. Negative offsets address local variables in the current stack frame. See the sectionActivation Records below.

Y ou may also specify an absolute memory address if you just supply the address with no ‘/" modifier. Thiswould ordinarily be
used to access constants or global variablesin the global data area.

Notes About the Instruction Set

1) There are only three conditional branch instructions, but that is enough, since you can test, for instance, if x is“not-less-
than” y instead of testing if x “is greater-than-or-equal-to” y. The conditional branches interpret their operands as signed
guantities—there is no way to reliably compare unsigned integers. Thisis not, however, a problem for comparing memory or
guadruple addresses, since both are limited to 15 hits.

2) The'$ quad must be quadruple number 0, and cannot appear anywhere else in the quad list. It will be executed once at the
beginning of the run, and must not be executed again.

3) Every function, including mai n() , must beginwitha'# quadto establishagtack frame.

4) Thefunction-cdl qued, ‘¢, requiresan I-va ue addressinto which thefunction’ sresult will beplaced. If thefunction doesnot return avaue,
thismay beO. Inany event, however, thisaddresswill be pushed onto the stack asakind of zeroth parameter. See Activation Records, below.

5) Virtud sysem /O functionsarelocated at negative quad addresses’. A function a quad number -1 readsaninteger, number -2 reedsaflodt,
and-3readsalineof charactersfrom cin. Quad number -9 printsaninteger, number -10 printsafloat, and number -11 printsastringto cout. Al
of theserequireasingle parameter to be pushed beforethecall, thelocation to beread into or printed from. Noneof them“returns’ anything.

Activation Records and the System Stack

Functionsuse activation recordsto accessparameters, and for storagefor areturnvalue, return address, dynamic link pointer, and loca storage.
Activdion recordsaredlocated onthe system stack, othey aredso sometimescaled stack frames. They areorganized asshown below.
Everything onthestack must dwaysbedignedtoan evenaddress. Usea'p’ (or ' P') quad to push parametersonto thestack. Y oumay push
addresses(“p#...") or vaues, depending onthe parameter passngmethod. The'c, ‘#,*/ and ‘N dso manipulatethe stack.

Notethet parametersare pushed inreverseorder, sothat parameter #1 isadwaysat offset +6 from the base of the activation record. Parameters
that the user pusheson the stack are not removed automatically by thesystem. Theuser may usea’”Y quad to removetheseafter thecalled func-
tionreturns, or, at thecost of “wasting” ahit of stack Space, they may be

smply left onthestack sincethe stack will be properly reset tothe previous (Low Memory)

stack framewhenthe current functionreturns. Ts(t)gcif
The function result address is pushed onto the stack when the -
functioniscalled (‘c’ quad). For afunction that returns a value, ;

this must always point to a memory location where the return P”St‘e,d Local Variables ;:‘2‘

valueisto be stored. To return avalue, the function should store by # -
the value indirectly through this pointer, which is always at offset Dyn amic Link Base of
+4 from the stack base. Act. Rec.

Return Address
Func. Result (ref) /4

/6 | parameter 1

Y ou will ordinarily not deal directly with the dynamic link; itis Pushed
used to locate and re-install the previous activation record whena by ‘C’

function return quad (/") is executed. The dynamic link, return
address, and function result reference are popped from the stack

. X 8 ter 2
automatically when ‘/’ is executed. ;yuzgl(legr Parameters paramee!
The architecture does not have a static chain, although the user parameter n
could manage hig’her own static chain using an emulated static
link register in memory and local address -2 (say) for links. | (High Memory)

California State University, Stanislaus Virtual Machine for Quadruples Documentation
Department of Computer Science Revised Fall, 2005

CS 4300 R. L. Zarling Page 2 of 3

Diagnostics

Diagnostic requests may appear before any opcode, with no intervening white space.. Y ou may usex (begin execution trace), X
(end execution trace), or @(dump current contents of data memory). If more than oneis given on asingle line, they must bein
the order xX@ A compiler would ordinarily not produce these; you would add them manually during debugging using an editor.

In the diagnostic output, addresses and memory contents are represented in hexadecimal out of respect for tradition. Calculated
results are shown in both hexadecimal and decimal for convenience. In the dump of the stack area, values on the dynamic
chain are represented with an underscore character in the middle; e.g. 7e_a2.

Limitations

The emulated data memory is Ox7ffc bytesin size. The stack is based at the top of memory and grows downward; thus, the
stack and the global data area mutually limit each other’s maximum size. There cannot be more than 32767 quadruplesin a
program; these however are stored in an area that does not overlap data memory.

Sample Programs

The following GCD program shows one possible set of quads which would implement the sample program shown. The com-
ments at the ends of the quads are for clarification only; they would not necessarily appear in the actual quad file.

000 0 ;constant 0 at static address 0 /1 Sanpl e programfor C++ subset
2 "\n" ;X &y are at 4 &6, not initialized /1 Conputes the GCD of two integers
8 "Enter two integers:
29 "The &CDis " /* include statements are needed for real Ct+, but
$ 13 40 ;Start code section, X & Y are in 4 and 6 are sinply considered comments in our subset
4 ;enter gcd(), a=@6, b=@8, tnp0=/-2, tnp2=/-4 */
e @804 ;if b==0, goto 4 #i ncl ude <i ostrean»
j 6 ;1f <>0, goto 6
i @6 @4 ;gcd = a int x, y; // The two val ues whose GCDis to be conputed
j 12 ;goto return
r @6 @8 /-2 ;formtnp0 = a nod b /1 In the subset, a and b are passed by reference, but in
p #-2 ;set second paraneter = tnp0 Il real C++, they are passed by value. It doesn't nmatter
p/8 ;set first parameter = b /1 in this program
c #-4 1 ;call gcd recursively; result to tnmp2 int ged (int a int b)
N4 ,pop paraneters
i /-4 @4 ;store return value if (b==0) return a;
/ ;return from subroutine else return gcd (b, a %b);
2 ;enter main; 2 bytes of local storage for tnp0=}2
p #8 ;set up string paraneter
c0-11 ;output string int main()
N2
p #4 ;paranmeter for Read cout << "Enter two integers: ";
c0-1 ;read integer to g4 (x) cin >>x >>vy;
N2 cout << "The @D is " << ged (X, y) << end;
p #6 ;paranmeter for Read }
c0-1 ;read integer to g6 (y)
N2
p #29 ; Message as parameter 4 Subscrlptlng Example
c0-11 ;Wwite string . . . -
A9 The following translatesa[5] = 42, assuming a isstored beginning at address6.
p #6 ;set second paraneter =y)
p #4 :set first paraneter = x 000 5 ;array subscript to use
c #-21 call gcd result to tnp0 002 2 ;el enent size in bytes
A 004 42 ;value to be stored
p#-2 ;set parameter for write = tnp 006 0 ;array start at this address (only 1st elnt initialized
c0-9 ‘write integer $ 1 20 ;20 bytes of global storage
A9 # 6 ;6 bytes of local storage (nmore than really needed)
p #2 :string address xmO 2 /-2 ;tmp0 = (subscript) * (el ement size)
co0-11 swrite string al-2#6 /-4 ;tnp2 = (tnp0) + (address of array)
A9 i 4 @-4 ;store value in address conputed above
h X@ ;dunp nemory so we can see what happened
h

(0 3.14159 MO 4 /-8)
4 2.0 M/-81/-41-8
8 "Enter the radius: p #27 2: x(m 0x0000, 0x0002, /Oxfffe) --> (0x7ff8) = Ox000a (= 10)
27 "The circunference is "¢ 0 -11 3: (a, /0xfffe, #0x0006, /Oxfffc) --> (O0x7ff6) = 0x0010 (= 16
49 "\ n" A2 g é:l(i, 0x0004, @O0xfffc) --> (0x0010) = 0x002a (= 42)

. . obal Data Area:
ﬁém Floating Point 23’_?0 0x0000 00 05 00 02 00 2a 00 00 ff ff ff 00 ff ff ff 00
p #8 Examp|e A2 0x0010 00 2a ff 00
c0-11 p #49 .
A9 c0-11 Runtime Stack Area:
p #-4 A2 Ox7ff4 e0 e0 00 10 00 0a 7f_fc
co-2 @ Stack: Ox7ff4->0x7ffa
N J
California State University, Stanislaus Virtual Machine for Quadruples Documentation
Department of Computer Science Revised Fall, 2005

CS 4300 R. L. Zarling Page 3 of 3

	VMQDocs.pg4

