
Virtual Machine for Quadruples Documentation
Revised Fall, 2005

Page 1 of 3

California State University, Stanislaus
Department of Computer Science
CS 4300 R. L. Zarling

Introduction
The Virtual Machine for Quadruples, vmq, implements a small but usable set of operations commonly found in real hardware 
architectures using an easily managed, ASCII based, “object” format. This combines portability with the ability to manually 
examine and even modify “object” programs with a simple text editor.  Program trace and memory dump functions are included 
to aid debugging.  It supports a limited set of data types: 16-bit integers, 32-bit floats, 16-bit pointers and character strings.  A 
system stack is used for subroutine linkage and local data storage.

File Format
Vmq “object” files are line-based ASCII files organized into two distinct sections: the global data section followed by the 
instruction section.  The global data section normally contains storage for all of the constants used in the program, as well as 
globally accessible variables.  The instruction section contains executable instructions in the form of “quadruples”: an 
“operation code” followed by up to three operands.  Lines may not begin with optional white space, and comment lines are not 
permitted (although any line, including a no-op instruction, may have comments at the end of the active information).

Data Types
Supported data types are 16-bit decimal integers, single-precision decimal floats (expressed with a decimal point), character 
strings in quotation marks (") whose length is the string length plus one (for a terminating '\0'), and 2-byte addresses.  Integers 
and addresses must be aligned on an even storage boundary; floats must be aligned on a four-byte boundary.  Integer, float and 
string constants may be initialized by a line in the quadfile Data Section which begins with a decimal address and then gives the 
constant value to be stored there.  As with the rest of the quadfile, anything on the line following the data value is a comment.

Virtual Machine Operations
Each line of the code section represents one instruction.  The following table summarizes the available operations.  Note that 
Operation Codes are all a single character; in general, lower-case codes represent integer operations and upper-case represents 
float operations.  Thus, for example, ‘a’ is integer addition, while ‘A’ is floating point addition.  Operands may be of several 
types: addresses, interpreted as either an r-value or an l-value and specified in one of three addressing modes; labels which 
specify the location of a quadruple assuming the first quadruple in the code section is number 0; or integer constants, which are 
simply signed 16-bit integers.  All numeric quantities are always given in base 10.

The Virtual Machine for Quadruples
A simple machine architecture for testing compilers

Version 2.0 September, 2002

Call function: ‘c’ o1 = o2()
Initialize runtime environment: ‘$’

l-value: integer or float or 0
Label: main entry address

Label (quad number)
int constant: size of globals N/A

N/AN/A

Label: jump destination
A function parameter
int constant: n bytes to pop
int constant: size of locals

Unconditional jump: ‘j’ goto o1
Push parameter: ‘p’ or ‘P’push (o1)
Pop n bytes: ‘^’ pop (o1)
Create stack frame: ‘#’ link -o1

Operation Operand 1 Operand 2 Operand 3

Add: ‘a’ or ‘A’ o3 = o1 + o2
Subtract: ‘s’ or ‘S’ o3 = o1 - o2
Multiply: ‘m’ or ‘M’ o3 = o1 * o2
Divide: ‘d’ or ‘D’ o3 = o1 / o2
Residue: ‘r’ o3 = o1 % o2
Bitwise OR: ‘|’ o3 = o1 | o2
Bitwise AND: ‘&’ o3 = o1 & o2
Jump if <: ‘l’ or ‘L’ o1<o2? goto o3
Jump if >: ‘g’ or ‘G’ o1>o2? goto o3
Jump if =: ‘e’ or ‘E’ o1=o2? goto o3

r-value: integer or float
r-value: integer or float
r-value: integer or float
r-value: integer or float
r-value: integer
r-value: integer
r-value: integer
r-value: integer or float
r-value: integer or float
r-value: integer or float

r-value: integer or float
r-value: integer or float
r-value: integer or float
r-value: integer or float
r-value: integer
r-value: integer
r-value: integer
r-value: integer or float
r-value: integer or float
r-value: integer or float

l-value: integer or float
l-value: integer or float
l-value: integer or float
l-value: integer or float
l-value: integer
l-value: integer
l-value: integer
Label (quad number)
Label (quad number)
Label (quad number)

Identity: ‘i’ or ‘I’ o2 = o1
Byte copy: ‘=’ o2 = o1
Float: ‘F’ o2 = float(o1)
Int: ‘f’ o2 = int(o1)
Bitwise NOT: ‘~’ o2 = ~o1
Negate: ‘n’ or ‘N’ o2 = -o1

r-value: integer or float
r-value: char
r-value: integer
r-value: float
r-value: integer
r-value: integer or float

l-value: integer or float
l-value: char
l-value: float
l-value: integer
l-value: integer
l-value: integer or float

N/A

Return from function: ‘/’ return
Halt execution: ‘h’ halt
No operation: ‘;’ noop

N/A N/A N/A



Virtual Machine for Quadruples Documentation
Revised Fall, 2005

Page 2 of 3

California State University, Stanislaus
Department of Computer Science
CS 4300 R. L. Zarling

R-Values and L-Values
The term “r-value” means an operand that will be evaluated and used in a calculation, while “l-value” is an operand that will be 
evaluated to an address where a result can be stored.  Thus, r-values can be given in any of the three addressing modes indirect, 
direct, or immediate, while l-values must be either indirect or direct.

Direct addressing mode means that the address represents the place in memory where the operand is to be placed (l-value) or 
retrieved from (r-value).  You  specify direct addressing by simply giving the address with no mode modifiers.

Indirect addressing mode means the operand points to a memory address where the actual effective address may be found.  You 
specify indirect mode by preceding the address with an “at” sign (@).

Immediate addressing mode means the address in the instruction is the data to be worked with.  You specify immediate mode 
by preceding an address with a sharp sign (#).  Immediate mode cannot be used for l-values.  For floating point operands, the 
immediate operand must contain a decimal point.

Base-Relative and Absolute Addressing
A local (stack-based) address needs to be interpreted as a base-relative offset; that is, it must be added to the base of the current 
stack frame to find the actual memory location.  You may specify such an offset by preceding the address with a slash (/).  Since 
the processor stack grows downward, positive offsets point into the previous activation record and may be used to address 
parameters.  Negative offsets address local variables in the current stack frame.  See the section Activation Records below.

You may also specify an absolute memory address if you just supply the address with no ‘/’ modifier.  This would ordinarily be 
used to access constants or global variables in the global data area.

Notes About the Instruction Set
1) There are only three conditional branch instructions, but that is enough, since you can test, for instance, if x is “not-less-
than” y instead of testing if x “is greater-than-or-equal-to” y.  The conditional branches interpret their operands as signed 
quantities—there is no way to reliably compare unsigned integers.  This is not, however, a problem for comparing memory or 
quadruple addresses, since both are limited to 15 bits.

2) The ‘$’ quad must be quadruple number 0, and cannot appear anywhere else in the quad list.  It will be executed once at the 
beginning of the run, and must not be executed again.

3) Every function, including main(), must begin with a ‘#’ quad to establish a stack frame.

4) The function-call quad, ‘c’, requires an l-value address into which the function’s result will be placed.  If the function does not return a value, 
this may be 0.  In any event, however, this address will be pushed onto the stack as a kind of zeroth parameter.  See Activation Records, below.

5) Virtual system I/O functions are located at negative “quad addresses”.  A function at quad number -1 reads an integer, number -2 reads a float, 
and -3 reads a line of characters from cin.  Quad number -9 prints an integer, number -10 prints a float, and number -11 prints a string to cout.  All 
of these require a single parameter to be pushed before the call, the location to be read into or printed from.  None of them “returns” anything.

Activation Records and the System Stack
Functions use activation records to access parameters,  and for storage for a return value, return address, dynamic link pointer, and local storage.  
Activation records are allocated on the system stack, so they are also sometimes called stack frames.  They are organized as shown below.  
Everything on the stack must always be aligned to an even address.  Use a ‘p’ (or ‘P’) quad to push parameters onto the stack.  You may push 
addresses (“p #...”) or values, depending on the parameter passing method.  The ‘c’, ‘#’, ‘/’ and ‘^’ also manipulate the stack.

Note that parameters are pushed in reverse order, so that parameter #1 is always at offset +6 from the base of the activation record. Parameters 
that the user pushes on the stack are not removed automatically by the system.  The user may use a ‘^’ quad to remove these after the called func-
tion returns, or, at the cost of “wasting” a bit of stack space, they may be 
simply left on the stack since the stack will be properly reset to the previous 
stack frame when the current function returns.

The function result address is pushed onto the stack when the 
function is called (‘c’ quad).  For a function that returns a value, 
this must always point to a memory location where the return 
value is to be stored.  To return a value, the function should store 
the value indirectly through this pointer, which is always at offset 
+4 from the stack base.

You will ordinarily not deal directly with the dynamic link; it is 
used to locate and re-install the previous activation record when a 
function return quad (‘/’) is executed.  The dynamic link, return 
address, and function result reference are popped from the stack 
automatically when ‘/’ is executed.

The architecture does not have a static chain, although the user 
could manage his/her own static chain using  an emulated static 
link register in memory and local address -2 (say) for links.

Base of
Act. Rec.

Local Variables

Top of
Stack

(Low Memory)

Return Address

Func. Result (ref)

(High Memory)

parameter 1
parameter 2

...
parameter n

/6

Pushed
by ‘#’

/4

...

/-2

Pushed
by ‘c’

/-4
...

/8Pushed
by caller

Dynamic Link

Parameters



Virtual Machine for Quadruples Documentation
Revised Fall, 2005

Page 3 of 3

California State University, Stanislaus
Department of Computer Science
CS 4300 R. L. Zarling

Diagnostics
Diagnostic requests may appear before any opcode, with no intervening white space..  You may use x (begin execution trace), X 
(end execution trace), or @ (dump current contents of data memory).  If more than one is given on a single line, they must be in 
the order xX@.  A compiler would ordinarily not produce these; you would add them manually during debugging using an editor.

In the diagnostic output, addresses and memory contents are represented in hexadecimal out of respect for tradition.  Calculated 
results are shown in both hexadecimal and decimal for convenience.  In the dump of the stack area, values on the dynamic 
chain are represented with an underscore character in the middle; e.g. 7e_a2.

Limitations
The emulated data memory is 0x7ffc bytes in size.  The stack is based at the top of memory and grows downward; thus, the 
stack and the global data area mutually limit each other’s maximum size.  There cannot be more than 32767 quadruples in a 
program; these however are stored in an area that does not overlap data memory.

Sample Programs
The following GCD program shows one possible set of quads which would implement the sample program shown.  The com-
ments at the ends of the quads are for clarification only; they would not necessarily appear in the actual quad file.

// Sample program for C++ subset
// Computes the GCD of two integers

/* include statements are needed for real C++, but
   are simply considered comments in our subset
 */
#include <iostream>

int x, y; // The two values whose GCD is to be computed

// In the subset, a and b are passed by reference, but in
// real C++, they are passed by value.  It doesn't matter
// in this program.
int gcd ( int a, int b )
{

if ( b == 0 ) return a;
else return gcd ( b, a % b );

}

int main()
{

cout << "Enter two integers: ";
cin >> x >> y;
cout << "The GCD is " << gcd ( x, y ) << endl;

}

000 0 ;constant 0 at static address 0
2 "\n" ;x & y are at 4 & 6, not initialized
8 "Enter two integers: "
29 "The GCD is "
$ 13 40 ;Start code section, X & Y are in 4 and 6
# 4 ;enter gcd(), a=@/6, b=@/8, tmp0=/-2, tmp2=/-4
e @/8 0 4 ;if b == 0, goto 4
j 6 ;if <>0, goto 6
i @/6 @/4  ;gcd = a
j 12 ;goto return
r @/6 @/8 /-2 ;form tmp0 = a mod b
p #/-2 ;set second parameter = tmp0
p /8 ;set first parameter = b
c #/-4 1 ;call gcd recursively; result to tmp2
^ 4 ;pop parameters
i /-4 @/4 ;store return value
/ ;return from subroutine
# 2 ;enter main; 2 bytes of local storage for tmp0=-2
p #8 ;set up string parameter
c 0 -11 ;output string
^ 2
p #4 ;parameter for Read
c 0 -1 ;read integer to g4 (x)
^ 2
p #6 ;parameter for Read
c 0 -1 ;read integer to g6 (y)
^ 2
p #29 ;message as parameter
c 0 -11 ;write string
^ 2
p #6 ;set second parameter = y
p #4 ;set first parameter = x
c #/-2 1 ;call gcd result to tmp0
^ 4
p #/-2 ;set parameter for write = tmp0
c 0 -9 ;write integer
^ 2
p #2 ;string address
c 0 -11 ;write string
^ 2
h

Subscripting Example
The following translates a[5] = 42, assuming a is stored beginning at address 6.

000 5 ;array subscript to use
002 2 ;element size in bytes
004 42 ;value to be stored
006 0 ;array start at this address (only 1st elmt initialized
$ 1 20 ;20 bytes of global storage
# 6 ;6 bytes of local storage (more than really needed)
xm 0 2 /-2 ;tmp0 = (subscript) * (element size)
a /-2 #6 /-4 ;tmp2 = (tmp0) + (address of array)
i 4 @/-4 ;store value in address computed above
X@; ;dump memory so we can see what happened
h

   2: x(m, 0x0000, 0x0002, /0xfffe) --> (0x7ff8) = 0x000a ( = 10 )
   3: (a, /0xfffe, #0x0006, /0xfffc) --> (0x7ff6) = 0x0010 ( = 16 )
   4: (i, 0x0004, @/0xfffc) --> (0x0010) = 0x002a ( = 42 )
Global Data Area:
0x0000  00 05  00 02  00 2a  00 00    ff ff  ff 00  ff ff  ff 00
0x0010  00 2a  ff 00

Runtime Stack Area:
0x7ff4  e0 e0  00 10  00 0a  7f_fc
Stack: 0x7ff4->0x7ffa

0 3.14159
4 2.0
8 "Enter the radius: "
27 "The circumference is "
49 "\n"
$ 1 51
# 8
p #8
c 0 -11
^ 2
p #/-4
c 0 -2
^ 2

M 0 4 /-8
M /-8 /-4 /-8
p #27
c 0 -11
^ 2
p #/-8
c 0 -10
^ 2
p #49
c 0 -11
^ 2
@h

Floating Point
Example


	VMQDocs.pg4

