
Functional Reactive Animation

Conal Elliott Paul Hudak

Microsoft Research Yale University

Graphics Group Dept. of Computer Science

conaltiicrosoft. com paul. hudak@yale. edu

Abstract

Run (Functional Reactive Animation) is a collection of data
types and functions for composing richly interactive, multi-
media animations. The key ide~ in Fran are its notions of
behauiors and events. Behaviors are time-varying, reactive
values, while events are sets of arbitrarily complex condi-
tions, carrying possibly rich information. Most traditional
values can be trested as behaviors, and when images are
thus treated, they become animations. Although these n~
tions are captured as data types rather than a programming
language, we provide them with a denotational semantics,
including a proper treatment of real time, to guide reaacm-
ing and implementation. A method to effectively and ef-
ficiently perform event detection using interval analysis is
also described, which relies on the partial information struc-
ture on the domain of event times. Fran has been imph+
mented in Hugs, yielding surprisingly good performance for
an interpreter-based system. Several examples are given, in-
cluding the ability to describe physical phenomena involving
gravity, springa, velocity, acceleration, etc. using ordinary
differential equations.

1 Introduction

The construction of richly interactive multimedia anima-
tions (involving audio, pictures, video, 2D and 3D graph-
ics) has long been a complex and tedous job. Much of
the difficulty, we believe, sterna from the lack of sufficiently
high-level abstractions, and in particular from the failure
to clearly distinguish between modeling and presentation, or
in other words, between what an animation is and how it
should be presented. Consequently, the resulting programs
must explicitly manage common implementation chores that
have nothing to do with the content of an animation, but
rather its preaentation through low-level display libraries
running on a sequential digital computer. These implemen-
tation chores include:

. stepping forward discretely in time for simulation and
for frame generation, even though animation is con-
cept ually cent inuous;

Permission to make digital/hard copy of part or all this work for

personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-

tage, the copyright notice, the title of the publication and ita date

aPPear, and notice is 9iven that c0pyin9 is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers, or to

redistribute to lists, requires prior specific permission and/or a fee,

ICFP ’97 Amsterdam, ND

@ 1997 ACM 0-89791 -918 -1/97 /0006 . ..$3.50

capturing and handling sequences of motion input events,
even though motion input is conceptually continuous;

time slicing to update each timevarying animation Da-
rameter, e~en ~hough these parm”ete~s conceptu~ly
vary in parallel; and

By allowing programmers to express the “what” of an
interactive animation, one can hope to then automate the
“how” of its presentation. With this point of view, it ehould
not be surprising that a set of richly expressive recursive
data types, combined with a declarative programming lan-
guage, serves comfortably for modeling animations, in con-
trast with the common practice of using imperative lan-
guages to program in the conventional hybrid modeling/-
presentation style. Moreover, we have found that non-etrict
semantics, higher-order functions, strong polymorphic typ-
ing, and systematic overloading are valuable language prop
erties for supporting modeled animations. For these reasons,
Fran provides these data types in the programming language
Haakell [9].

Advantages of Modeling over Presentation
The benefits of a modeling approach to animation are similar
to those in favor of a functional (or other declarative) pr~
gramming paradigm, and include clarity, ease of construc-
tion, composability, and clean semantics. But in addition
there are application-specific advantages that are in some
ways more compelling, painting the picture from a software
engineering and end-user perspective. These advantages in-
clude the following:

●

●

●

Authoring. Content creation systems naturally con-
struct models, because the end users of such systems
think in terms of models and typically have neither the
expertise nor interest in programming presentation de-
tails.

Optimizabiltty Model-baaed systems contain a presen-
tation sub-system able to render any model that can be
constructed within the system. Because higher-level
information is available to the presentation sub-system
than with presentation programs, there are many more
opportunities for optimization.

Regulation. The presentation sub-system can also more
easily determine level-of-detail management, as well
as sampling rates required for interactive animations,
baaed on scene complexity, machine speed and load,
etc.

263

● Mobility and safety. The platform independence of
the modeling approach facilitates the construction of
mobile applications that are provably safe in World
Wide Web applications.

The Essence of Modeling Our goal in this paper
is to convey the essence of a modeling approach to reac-
tive animations as captured in Fran, as summarized in the
following four concepts:

1. Temporal modeling. Values, called behaviors, that
vary over continuous time are the chief values of inter-
est. Behaviors are first-class values, and are built up
compositionally; concurrency (parallel composition) is
expressed naturally and implicitly. As an example, the
following expression evaluates to an animation (i.e., an
image behavior) containing a circle over a square. At
time t, the circle has size sin t, and the square has size
Cost.

bigger (sin time) circle ‘over’

bigger (COS time) square

2. Event modeling. Like behaviors, events are first-
class values. Events may refer to happenings in the
real world (e.g. mouse button presses), but also to
predicates baaed on animation parameters (e.g. prox-
imity or collision). Moreover, such events may be com-
bined with others, to an arbitrary degree of complexity,
thus factoring complex animation logic into semanti-
cally rich, modular building blocks. For example, the
event describing the first left-button press after time
tO is simply lbp tO; cme describing time squared being
equaf to 5 is just:

predicate (time-2 == 5) tO

and their logical disjunction is just:

lbp tO . I . predicate (time-2 == 5) tO

3. Declarativereactivity. Many behaviors are natu-
rally expressed in terms of reactions to events. But
even these “reactive behaviors” have declarative W+
mantics in terms of temporal composition, rather than
an imperative semantics in terms of the state changes
often employed in event-based formalisms. For ex-
ample, a color-valued behavior that changes cyclically
from red to green with each button press can be de-
scribed by the following simple recurrence:

colorCycle tO =
red ‘untilB’ lbp tO *=> \tl ->
green ‘ untilB’ lbp t 1 *=> \t2 ->
colorCycle t2

(In Haakell, identifiers are made into infix operators
by backquotes, as in b ‘ unt ilB’ e. Ahw, infix opera-
tors can be made into identifiers by enclosing them in
parentheses, as in (+) x y. Lambda abstractions are
written as “\ vars -> ezp”.)

4, Polymorphic media. The variety of time-varying
media (images, video, sound, 3D geometry) and pa-
rameters of those typea (spatial transformations, col-
ors, points, vectors, numbers) have their own type-
specific operationa (e.g. image rotation, sound mixing,
and numericaf addition), but fit into a common frame-
work of behaviors and reactivity. For instance, the
“unt ilB” operation used above is polymorphic, apply-

ing to all types of time-varying values.

Our Contributions We have captured the four fea-
tures above as a collection of recursive data types, functions,
and primitive graphics routines in a system that we call
Pran, for Functional Reactive Animation. Although these
data types and functions do not form a programming lan-
guage in the usual sense, we provide them with a formal
denotational semantics, including a proper treatment of real
time, to allow precise, implementation-independent reaaon-
ing. This semantics includes a CPO of real time, whose ap-
proximate elements allow us to reason about events before
they occur. As would be true of a new programming lan-
guage, the denotational semantics has been extremely useful
in designing Fran. All of our design decisions begin with an
understanding of the formaf semantics, followed by reflect-
ing the semantics in the implemental ion. (The semantics is
given in Section 2.)

Perhaps the most novel aspect of Fran is its imp~icit treai!-
ment of time. This provides a great deal of expressiveness
to the multimedia programmer, but also presents interesting
challenges with respect to both formal semantics and imple-
mentation. In particular, events may be specified in terms
of boolean functions of continuous time. These functions
may become true for arbitrarily brief periods of time, even
instantaneously, and so it is challenging for an implemen-
tation to detect these events. We solve this problem with
a robust and efficient method for event detection baaed on
interval anal@s. (Implementation issues are discussed in
Section 4.)

Specifically, the nature of an event can be exploited to
eliminate search over intervals of time in which the event
provably do~ not occur, and focus intead on time inter-
vals in which the event may occur. In some csses, such as a
collection of bouncing balls, exact event times may be deter-
mined analytically. In general and quite frequently, however,
analytic techniques fail to apply. We describe intead an al-
gorithm for event detection based on interval analVsis and
relate it to the partial information structure on the CPO of
event times.

2 The Formal Semantics of I%an

The two most fundamental notions in Fran are behaviors

and everuk We treat them as a pair of mutually recursive
polymorphic data types, and specify operations on them via
a denotational semantics (The “media types” we often use
with events and behaviors will be treated formally in a later
paper; but see also [7].)

2.1 Semantic Domains

The abstract domain of time is called Time. The abstract
domains of polymorphic behaviors (a-behaviors) and poly-
morphic events (a-events) are denoted 13ehavior~ and .Event=,
respectively.

264

Most of our domains (integers, booleans, etc.) are stan-
dard, and require no explanation. The Time domain, how-
ever, requires special treatment, since we wish values of time
to include partial elements. In particular, we would like to
know that a time is “at least” some value, even if we don’t
yet know exactly what the final value will be. To make this
notion precise, we define a domain (pointed CPO) of time
as follows:

Denote the set of real numbers as R, and include in that
set the elements co and –m. This set comes equipped with
the standard arithmetic ordering ~, including the fact that
–Oo~z~oo forallz E!R.

Now define Time = Y? + R, where elements in the sec-
ond “copy” of 3? are distinguished by prefixing them with
~, as in ~ 42, which should be read: “at least 42.” Then

define J- Time = ~ (–co), and the domain (i.e. information)
ordering on Time by:

It is easy to see that L Time is indeed the bottom element.
Also note that a limit point y is just the LUB of the set of
partial elements (“pretimes”) that approximate it:

Since the ordering on the domain Time is chain-like, and
every such chain h= a LUB (recall that R has a top element
m), the domain Time is a pointed CPO. This fact is neces-
sary to ensure that recursive definitions are well defined.

Elements of Time are most useful for approximating the
time at which an event occurs. That is, an event whose time
is approximately ~t is one whose actual time of occurrence
is greater than t. Note that the time of an event that never
occurs is just co, the LUB of R.

Finally, we extend the definition of arithmetic s to all
of Time by defining its behavior across the subdomains as
follows:

z<~yifx<y

This can be read: “The time z is less than or equal to a time
that k at least Y, if z S u.” (ZZ S v and ~Z s ~y are
undefined.) We can easily show that this extended function
of type Time ~ Time ~ Bool is continuous with respect to
c. It is used in various places in the semantics that follows.

Semantic l?unctions We define an interpretation of
a-behaviors as a function from time to a-values, producing
the value of a behavior b at a time t.

Next, we define an interpretation on cr-events as simply non-
strict Time x a pairs, describing the time and information
associated with an occurrence of the event.

Occ : Evenk ~ Time x cr

Now that we know the semantic domains we are working
with, we present the varioua behavior and event combinators
with their formal interpretations.

2.2 Semantics of Behaviors

Behaviors are built up from other behaviors, static (non-
time-varying) values, and events, via a collection of con-
structors (combinators).

Time. The simplest primitive behavior is time, whose
semantics is given by:

time : BehaviorTime
at[tirne]t = t

Thus at[time] is just the identity function on Time.

Lifting. We would like to have a general way of “lifting”
functions defined on static values to analogous functions de-
fined on behaviors. This lifting is accomplished by a (con-
ceptually infinite) family of operators, one for each arity of
functions.

hjtn:(al+ . ..-+ fl)+l)+
Behavior.l -...- Behavioral ~ Behauior@

at[lift~ j bl . . .b~]t = f (at[bl]t) . . . (at[b~]t)

Note that constant value lifting is just li~.
Notational aide: In practice, lifting is needed quite fre-

quently, so it would be inconvenient to make lifting explicit
everywhere. It is more desirable to use familiar names like
“sin”, “cos”, “+”, “*”, and even Iiterals like “3” and “blue”,
to refer to lifted versions of their standard interpretations.
For instance, a literal such as 42 should behave as the con-
stant behavior “li~ 42,” and a summation on behaviors
such as “bl + bz” should behave as “li~ (+) bl bz”, where
“(+)” is curried addition. In our implementation of Fran in
Haakell, type classes help considerably here, since the Num
class providea a convenient implicit mechanism for lifting
numerical values. In particular, with a suitable instance
declaration, we achieve exactly the interpretations above,
even for literal constants.

Time transformation. A time transform allows the
user to transform locaf tim~frames. It thus supports what
we call tempod modularity for behaviors of all types. (Sim-
ilarly, 2D and 3D transforms support spatial modulatit~ in
image and geometry behaviors.)

time lkan.sjorm : Behaviora ~ Behavior Tame - Behavior.
at [time I%msform b tb~ = at [b] oat [tb]

Thus note that time is an identity for time tinsform

time!fkansform b time= b

As examples of the use of time transformation in Fran,
the expression:

time !hnsforrn b (time/2)

slows down the animation b by a factor of 2, whereas:

time Tkansjorm b (time – 2)

delays it by 2 seconds,

265

Integration. Integration applies to real-valued as weli
as 2D and 3D vector-valued behaviors, or more generally, to
vector-spaces (with limits). Borrowing from Haskell’s type
class notation to classify vector-space types:

integml: VectorSpace o + Behauiora ~ Time ~ Behaviora

at[integralb to]t = f: at [b]

Integration allows the specification of velocity behaviors,
and, if used twice, acceleration behaviors. For example, if
the velocity of a moving ball is given by behavior b (perhaps
a constant velocity, perhaps not), then its position relative
to starting time toisgiven by tn.tegml b to. This provides a
natural means to express physics-baaed animations, exam-
ples of which are given in Section 3.

Reactivity. The key interplay in Fran is that between
behaviors and events, and is what makes behaviors reactive.
Specifically, the behavior b untilB e exhibita b’s behavior
until e occurs, and then switches to the behavior associated
with e. More formally:

untilB: Behaviora ~ EventBeha~ora ~ Behaviora

at[b untdll e]t = if t< t,thenat[b]telseat[b’]t
where (t., b’) = occ[e]

Note that the inequality used here, tS t.,isthe one defined
in Section 2.1. In the next section examples of reactivit y are
given for each of the various kinds of events.

2.3 Semantics of Events

Event handling. In order to give examples using spe-
cific kinds of events, we first describe the notion of event
handlers, which are applied to the time and data associated
with an event using the following operator:

(-) : Even& + (Time ~ CY~ 9) + EventP
occ[e -t+ f] = (t=, f t= x)

where (t,, x) = occ[e]

For convenience, we will also make use of the following
derived operations, whkh igmore the time or the data or
both:

(s) : Even& + (a+ /3) ~ Eventd
(*+) : Even& + (Timed ~) ~ Event.
(+) : Eueni& ~ P - Eventfl

ev-g = ev*Atx. gx
ev *-h = ev-l+Atz. ht
ev+z’ = m * At z. z’

These different operator symbols are somewhat neumonic:
(++) receives afl of the parameters, (–*) receives none
of the parameters, (*+) receives only the time, and (=)
receives only the data.

Constant events. The simplest kind of event ia one
specified directly by its time and value.

wnstEv: Time - a ~ Evenk
occ[con3tEv t. z] = (t=, z)

Thus, for example, the behavior:

bl unti.lB (constEv 10 z)+ b2

exhibits behavior bl until time 10, at which point it begins
exhibiting behavior b2 (x is ignored in this example, but of
course needn’t be).

External events. For this paper we only consider one
kind of external event—mouse button presses-which can
be from either the left or right button. The value associated
with a button press event is the corresponding button release
event, which in turn yielda a unit value (() is the unit type):

lbp, rbp: Time - EventEvento

The meaning of an event /bp to, for example, is the pair
(t., e), such that t.is the time of the fust left button press
after to,and e is the event corresponding to the first left
button release after te.Thus the behavior:

bl untilB (lbp to) = Ae.
b2 untilB e+
bs

exhibits behavior bl until the left button is pressed, at which
point it becomes bz until the left button is released, at which
point it becomes bs.

Predicates. It is natural to want to specify certain events
m the first time that a boolean behavior becomes true after
a given time.

predicate : BehaviorBool h Time h Event.
occ[predicate b to] = (inf {t > to [at[b]t}, ())

That is, the time of a predicate event is the infimum of the
set of times greater than tOat which the behavior ia true.
Note that this time could be equal to to.

The behavior:

bl untilB (predicate (sin time= 0.5) to)-+ bz

thus exhibits bl until the first time t after tothat sin tis
0.5, after which it exhibits bz.

If the boolean behavior argument to ptiicate were an ar-
bitrarily complex computable function, then predicate would
not be computable. To cope with this problem, we re-
strict behaviors somewhat, to make predicate not only com-
putable, but alao efficient. We will return to this issue in
Section 4.2.

Choice. We can choose the earlier of two events with the
.1. operatcm

(.1.) : Even& - Even& ~ Even~
occ[e .1. e’] = (t=, z), if t=< t:

= (t~z’~cc~jherwiae
where (t=, z)

1
(tj, d) = occ[e]

For example, this behavior:

bl untillil (fbp to .1. predicate (time> 5) to)+ bz

waits for either a left button press or a timeout of 5 seconds
before switching from behavior bl to behavior ~. As an
alternative, the following example switches to a different
behavior, b3, upon timeout.

bl untiE3 (lbp to -+ ~ .1. predicate (time> 5) to+ b3)

266

Snapshot. At the moment an event occurs it is often
convenient to take a “snapshot” of a behavior’s value at
that point in time.

snapshot : Even& * Behauiord + EvenL xo
occ~e snapshot b] = (t,, (z, at[b]t.))

where (t., z) = occ[e]

For example, the behavior:

bl untdB (Ibp tOsnapshot (sin time)) =+- A(e, y). bz

~abs the sine of the time at which the left button is preaaed,
binds it to y, and continues with behavior bz which pre-
sumably depends on y. Although this example could also
be achieved by grabbing the time of the left button press
event and computing its sine, in general the behavior be-
ing snapshot can be arbitrarily complex, and may in fact be
dependent on external events.

Event sequencing. lt ia sometimes useful to use one
event to generate another. The event joinEv e is the event
that occurs when e’ occurs, where e’ is the value part of e.

joinEv: EVentEvent= + Event.
occ~oinEv e] = occ[srtd (occ[e])]

(This tinction is so named because it is the “join” operator
for the Event monad [221.)

For example, the event

joinEv (lbp tO*+ prediwte (b= O))

occurs the first time that the behavior b has the value zero
Wer the first left button press after time tO.

3 Some Larger Examples

The previous section presented the primitive combinators
for behaviors and events, along with their formaf semantics.
The following examples illustrate the use of some of these
combhatora. The examples are given as Haskell code, whose
correspondence to the formal semantics should be obvious.
(All values in these examples are behaviora, though we do
not explicitly say sO.)

To begin, let’s define a couple of simple utility behaviors.
The first varies smoothly and cyclically between -1 and +1.

wiggle = sin (pi * time)

Using Wiggle we can define a function that smoothly varies
between its two argument valuea.

vigglaliange 10 hi =
10 + (hi-lo) ● (viggle+i) /2

Now let’s create a very simple animation: a red, pulsat-
ing ball.

pBall = uithColor red
(bigger (Wigglelkmge 0.5 1) circle)

The function bigger scales its second argument by the amount
specified by ik tirat argument; since the firat argument is a
behavior, the result is also a behavior, in this case a ball
whose size variea from full size to half its full size.

A key attribute of Fkan ia that behaviors are wmposable.
For example, pBall. can be further manipulated, as in:

rBall = move (vectorPolar 2.0 time)
(bigger 0.1 pBall)

which yields a ball moving in a circular motion with radius
2.0 at a rate proportional to time. The ball itself is the same
as pBall (red and pulsating), but 1/10 the original size.

Certain external phenomena can be treated as behaviora,
too. For example, the position of the mouse can naturally
be thought of as a vector behavior. Thus to cause an image
to track exactly the position of a mouse, all we need to do
is:

follovHouse im tO = move (mouse tO) im

(The function move shifts an image by an offeet vector.)
Another natural way to define an animation is in terms

of mtes. For example, we can expand on the mous~follower
idea by having the image follow the mow at a rate that is
dependent on how far the image is from the current mouse
position.

follovHouseRate im tO = move offset im
inhere offset = integral rate tO

rate = mouse tO .-. pos
pos = origin2 . +- offset

Note the mutually recursive specification of of f set, rate,
and pos: The offset starts out as the zero vector, and grows
at a rate called rate. The rate is defined to be the dif-
ference between the mouse’s location (mouse is a primitive
behavior that represents mouse position) and our anima-
tion’s position pea. pos, in turn, is defined in terms of the
offset relative to the origin. As a result, the given image al-
ways pursues the mouse, but moves faster when the d~tance
is greater. (The operation .+- adda a point and a vector,
yielding a point, and .-. subtracts two points, yielding a
vector.)

As a variation, we can virtually attach the image to the
mouse cursor using a spring. The definition is very similar,
with position defined by a starting point and a growing off-
set. This time, however, the rate is itself changing at a rate
we call accel. This acceleration is defined in part by the
difference between the mouse position and the image’s posi-
tion, but we also add some drag that tends to slow down the
image by adding an acceleration in the direction opposite to
its movement. (Increasing or decreasing the “drag factor”
of 0.5 below creates more or less drag.)

f olloui40useSpring im tO = move offset im
vhere offset = integral rate tO

rate = integral accel tO
accel = (mouse tO .-. pos) - 0.5 *- rate
pos = origin2 .+- offset

(The operator *- multiplies a real number by a vector, yield-
ing a vector.)

As an example of event handling, the foUowing behavior
describes a color that changes between red and blue each
time the left button is pressed. We accomplish this change
with the help of a function cycle that takes two colors, c 1
and c2, and gives an animated color that starts out aa cl.
When the button is pressed, it swaps cl and C2 and repeats
(using recursion).

anim12 tO = withColor (cycle red blue tO) circle
where cycle cl C2 tO =

cl ‘untilB’ lbp tO *=> cycle C2 cl

267

bounce minVal maxVal yO VO g tO = path
Where path = start tO (yO,vO)

start to (yo,vo) = y ‘untilB< doBounce +=> start

where y = liftO yO + integral v tO
v = liftO VO + integral g tO
reciprocity = 0.8

doBounce :: Event (RealVal, RealVal) -- returns new y and v
doBounce = (collide ‘snapshot’ pairB y v) ==> snd ==> \ (yHit,vHit) ->

(yHit, - reciprocity * vHit)
collide = predicate (y <=* liftO minVal &&* v<=*O II*

y >=* liftO maxVal &&* v>=*O) tO

Figurel: One-Dimensional Bounce

Note that the Time argument in the recursive call to cycle
is supplied automatically by *=>.

The next example is a number-valued behavior that starts
out as zero, and becomes -1 while the left button is pressed
or 1 while the right button is pressed.

bSign tO =
O ‘untilB’ lbp tO ==> nonZero (-1) .1.

rbp tO ==> nonZero 1
where nonZero r stop =

r ‘untilB’ stop *=> bSign

We can use the function bSign above to control the rate
of growth of an image. Pressing the left (or right) button
causes the image to shrink (or grow) until released. Put
another way, the rate of growth is O, -1, or 1, according to
bSign.

grow im tO = bigger size im
where size = 1 + integral rate tO

rate = bSign tO

A very simple modification to the grow function above
causes the image to grow or shrink at the rate of its own
size (i.e. exponentially).

grow) im tO = bigger size im
where size = 1 + integral rate tO

rate = bSign tO * size

Here’s an example that demonstrates that even colors
can be animated. Using the function rgb, a color behavior
is created by tixing the blue component, but allowing the
red and green components to vary with time.

uithColor (rgb (abs (COS time))
(abs (sin (2*time)))
0.5)

circle

As a finaf example, let’s develop a modular program to
describe ’’bouncingballs.” Firetnotethat thephysicalequ&
tions describing the position y and velocity v at time t of an
object being accelerated by gravity g are:

Y = yo+&dt
v . VO+~tO g dt

whereyoandvo aretheinitial position and velocity, respec-
tively of the object at time to. In Fkan these equationa are
simply:

y = liftO yO + integral v tO
v = liftO VO + integral g tO

Next we define a function bounce that, in addition to
computing the position of an object based on the above
equations, also determine when the ball h= hit either the
floor or the ceiling, and if so revereee the direction of the
ball while reducing its velocity by a certain reczprocit~, to
account for loss of energy during the collision. The code for
bounce is shown in Figure 1. Note that collision is defined
as the moment when either the pcsition has exceeded the
minVal and the velocity is negative, or the position haa ex-
ceeded themaxVal and the velocity ia positive. When such
a collision is detected, the current position and velocity are
snapshot, and the cycle repeats with the velocity negated
and scaled by the reciprocityy fact or. (The various opera-
tors with * after them are lifted versions of the underlying
operators.)

Now that bounce is defined, we can also use it to de-
scribe horizontal movement, using O for acceleration. Thus
to simulate a bouncing ball in a box, we can simply write:

moveXY x y
(withColor green circle)

where
x = bounce xMin xMax XO VXO O tO
y s bounce yHin yMax yO vyO g tO

where xMin, flax, yMin, and yMaxare the dimensions of the
box.

4 Implementation

Theformaleemantics giveninSection 2couldalrnost serve
aa an implementation, but not quite. In this section, we de
scribe the non-obvious implementation techniques ueed in
Fran. One relatively minor item is integration. While sym-
bolic integration could certainly be used for simple behav-
iors, we have instead adapted standard textbook numerical
techniques. (We chiefly w fourth order Runge Kutta [17].)

268

4.1 Representing Behaviors

An early implementation of Fran represented behaviors as
impliwi in the formal semantics:

data Behavior a = Behavior (Time -> a)

This representation, however, leads to a serious inefficiency.
To see why, consider a simple sequentially recursive reactive
behavior like the following.

b = toggle True O
where toggle val tO =

lif tO val ‘untilB’ lbp tO *=>
toggle (not val)

This behavior toggles between true and false whenever the
left button is pressed. Suppose b is sampled at a time tl after
the first button press, and we then need to sample b at a
time tz> tl.Then b needs to notice that tz is after the first
button press, and then see whether it is also beyond the
second button press. After n such events, sampling must
verify that their given times are indeed past n events, so
the running time and the (lazily expanded) representation
would be O(n). One could try to eliminate this “space
time leak” by switching to a stateful implementation, but
doing so would interfere with a behavior’s ability to support
multiple simultaneously time-transformed versions of itself.

We solve this problem by having behavior sampling gen-
erate not only a value, but also a new, possibly simpler,
behavior.

data Behavior a =
Behavior (Time -> (a, Behavior a))

(In fact, we use a slightly more complex representation, as
expkained in Section 4.2 below.) Once an event is detected
to be (t,, b’), the new behavior is sampled and the resulting
value and possibly an even further simplified version are r~
turned. In most cases (ones not involving time transform),
the original untilB behavior is then no longer accessible, and
so gets garbage collected. Note that this optimization im-
plies some loss of generality: sampling must be done with
monotonically non-decreasing times.

These same efficiency issues apply as well to integration,
eliminating the need to re-start integration for each samp-
ling. (In fact, our formulation of numerical integration is
as sequentially recursive reactive behaviors.)

4.2 Implementing Events

There are really two key challenges with event detection:
(a) how to avoid trying too soon to catch events, and (b)
how to catch events efficiently and robustly when we need
to. We use a form of laziness for the former challenge, and
a technique called interval analysis for the latter.

Representing events lazily. Recallthe semantics
of reactivity:

untilB : Behavior. ~ EventBeha~or * Behaviora

at[b untilB e]t = if t< t=thenat[b~telseat[b’]t
where(t., b’) = occ[e]

Note that values of an untilll-baaed behavior at t s t=
do not depend on the precise value of t,,just the partial
information about t.that it is at least t.This observation

is crucial, because it may be quite expensive or, in the case of
user input, even impossible to know the value oft. before the
time t, arrives. Instead, we represent the time t.by a chain
of lower-bound time values increasing monotonically with
respect to the information ordering defined in Section 2.1.
Because these chains are evaluated ~a.zdy,detection is done
progressively on demand.

Detecting predicate events. The second imple-
ment ation challenge raised by events is how to determine
when predicate events occur. For instance, consider the
event that occurs when t e4t = 10:

predicate (time * exp (4 * time) ==* 10) O

Any technique based solely on sampling of behaviors must
fail to detect events like this whose boolean behaviors are
true only instantaneously. An alternative technique is sym-
bolic equation solving. Unfortunately, except for very simple
examples, equations cannot be solved symbolically.

The technique we use to detect predicate events is in-
terval anal~sis (IA) [20]. It uses more information from a
behavior than can be extracted purely through sampling,
but it does not require symbolic equation solving. Instead,
every behavior is able not only to tell how a sample time
maps to a sample value, but also to produce a conservative
interval bound on the values taken on by a behavior over
a given interval 1. More precisely, the operation during,
mapping time intervals to a intervals, has the property that
at [b]t E during [b]1 for any a-valued behavior b, timein-
terval 1, and time tE 1.

An interval is represented simply as a pair of values:

data Ivl a = a ‘Upto’ a

For instance, “3 ‘Upto’ 10” represents the interval {3,101,
i.e., the set of x such that 3 s z s 10. The implement
tion of a behavior then contains both the tirm+sarnpling and
interval-sampling functions:

data Behavior a =
Behavior (Time -> (a, Behavior a))

(Ivl Time -> (Ivl a, Behavior a))

As an example, the behavior time maps times and time
intervale to themselves, and returns an unchanged behavior.

time :: Behavior Time
time = Behavior (\ t -> (t, time))

(\ iv -> (iv, time))

“Lifting” of functions to the level of behaviors works sim-
ilarly to the description in Section 2, but additionally maps
domain intervals to range intervals, and r~applies the lifted
functions to possibly altered behavior arguments. For in-
stance, li~ is implemented as follows.

lift2 f fi bl b2 = Behavior sample isample
where sample t = (f xl x2, lift2 f fi bl’ b2’)

where (xl, bl)) = bl ‘at C t
(x2, b2’) = b2 ‘at’ t

iasmple iv = (fi xil xi2, lift2 f fi bl~ b2’)
where (xii, bl’) = bi ‘during’ iv

(xi2, b2’) = b2 ‘during’ iv

The restriction on behaviors referred to in Section 2.3
that makes event detection possible, is that behaviors are
composed of functions f for which a corresponding f i is

269

known in the lijtn functions. (These f i are called “inclusion
functions.”)

Defining functions’ behaviors over intervals is well-under-
stood [20], and we omit the details here, other than to point
out that Haakell’s type classes once again provide a conve
nient notation for interval versiona of the standard arith-
metic operators. For example, evaluating

(2 ‘Upto’ 4) + (10 Wpto’ 30)

yielda the interval /12,34). Also, a useful IA technique is to
exploit intervals of monotonicit y. For instance, the exp func-
tion is monotonically increasing, while sin and cos functions
change between monotonically increasing and monotonically
decreasing on intervals of width n.

We can also apply IA to boolean behaviors, if we consider
booleans to be ordered with False t True. There are three
nonempty boolean intervats, corresponding to the behavior
being true never, sometimes, or always. For example, the
intervat form of equality checks whether its two interval ar-
guments overlap. If not, the answer is uniformly false. If
both intervals are the same singleton interval, then the an-
swer is uniformly true. Otherwise, IA only knows that the
answer may be true or false throughout the interval. Specif-
ically:

(101 ‘Upto’ hil) =4 (102 ‘Upto’ hi2)
I hil < 102 I I hi2 < 101 =

False ‘Upto’ False
I lol==hii M lo2==hi2 M 101==102 =

True ‘ Upto‘ True
I otherwise =

False ‘Upto’ True

Similarly, it is straightforward to define interval versions of
theinequality operators and logical operators (conjunction,
disjunction, and negation).

With this background, detection of predicate events throug
IA ia straightforward. Given a start time tl,choose a time
tz> tl,and evaluate the boolean behavior over [t1,tz],yield-
ing one of the three boolean intervals listed above. If the
result is uniformly false, then tzis guaranteed to be a lower
bound for the event time. If uniformly true, then the event
time is t 1 (which is the infimum of times after tl). Oth-
erwise, the interval is split in half, and the two halves are
considered, starting wit h the earlier half (because we are
looking for the first time the boolean behavior is true), At
some point in this recursive search, the interval being di-
vided becomes smaller than the desired degree of temporal
accuracy, at which point event detection claims a success.

This event detection algorithm is captured in the def-
init ion of predicate given in Appendix A. This function
uses the above divide-and-conquer strategy in narrowing
down the interval, but atso, a double-and-conquer strategy
in searching the right-unbounded time interval. The idea
that if the event was not found in the next w seconds, then
perhaps we should look a bit further into the future-2w
seconds-the next time around.

It is atao possible to apply IA to positional user input.
The idea is to place bounds on the rate or acceleration of
the positional input, and then make a worst-case analysis
baaed on these bounds. We have not yet implemented this
idea.

5 Related Work

Henderson’s functional geomet~ [12] was one of the first
purely declarative approaches to graphics, although it does
not deal with animation or reactivity. Several other re-
searchers have atso found declarative languages well-suited
for modeling pictures. Examples include [15, 23,3, 10].

Arya used a lazy functional language to model 2D an-
imation as lazy lists of pictures [1, 2], constructed using
list combinators. While this work was quite elegant, the
use of lists implies a discrete model of time, which is some
what unnatural. Problems with a discrete model include the
fact that time-waling becomes difficult, requiring throwing
away frames or interpolation between frames, and rendering
an animation reouires that the frame rate match the dis-
crete representat~on; if the frames cannot be generated fast
enough, the perceived animation will slow down. Our con-
tinuous model avoids these problems, and has the pleasant
property that animations run at precisely the same speed,
regardless of how fast the underlying hardware is (slower
hardware will generate lees smooth animations, but they
will still run at the same rate).

The TBA G system modeled 3D animations aa functions
over continuous time, using a “behavior” type family [8, 19].
These behaviors are built up via combinations that are auto
matically invoked during solution of high level constraints.
Because it used continuous time, TBAG was able to support
derivatives and integrals. It also used the idea of elevating
functions on static values into functions on behaviors, which
we adopted. Unlike our approach, however, reactivity was
handled imperatively, through constraint assertion and re-
traction, performed by an application program.

CML (Concurrent ML) formalized synchronous opera-
tions as first-class, purely functional, values called “events”
[18]. Our event combinators “. I .” and “==>” correspond
to CML’S choose and wrap functions. There are substantial

;h differences, however, between the meaning given to “events”
in these two approaches. In CML, events are ultimately used
to perform an action, such aa reading input from or writing
output to a file or another process. In contrast, our events
are used purely for the vatues they generate. These values
often turn out to be behaviors, although they can also be
new events, tuples, functions, etc.

C’oncuwent Haskell [14] extends the pure lazy functional
programming language Haskelt with a small set of primitives
for explicit concurrency, designed around Haakell’s monadic
support for 1/0. While this system is purely functional in
the technical sense, its semantics has a strongly imperative
feel. That is, expressions are evaluated without side-effects
to yield concurrent, imperative computations, which are ex-
ecuted to perform the implied sideeffects. In contrast, mod-
eling entire behaviors as implicitly concurrent functions of
continuous time yielda what we consider a more declarative
fed.

Haskore [13] is a purely functional approach to construct-
ing, analyzing, and performing computer music, which haa
much in common with Henderson’s functional geometry, even
though it is for a completely different medium. The Haskore
work also points out useful algebraic properties that such
declarative systems possess. Other computer music lan-
guages worth mentioning include Canon [5], Fbgue [6], and a

language being developed at GRAME [16], only the latter of
which is purely declarative. Fugue also highlights the util-
ity of lazy evaluation in certain contexts, but extra effort is
needed to make this work in its Lispbaaed context, whereas

270

in a non-strict language such as Haskell it essentially comes
“for free.”

DtrectX Animation is a library developed at Microsoft to
support interactive animation. Fran and Direct X Animation
both grew out of the ideas in an earlier design called Ac-
tive VRA4L [7]. DirectX Animation is used from more main-
stream imperative languages, and so mixes the functional
and imperative approaches.

There are also several languages designed around a syn-
chronous data-jiow notion of computation. The general-
purpose functional language Lucid [21] is an example of this
style of language, but more importantly are the languages
Signal [11] and Lustre [4], which were specifically designed
for control of real-time systems.

In Signal, the most fundamental idea is that of a signal, a
timeordered sequence of values. Unlike Nan, however, time
is not a value, but rather is implicit in the ordering of vafues
in a signal. By its very nature time is thus discrete rather
than continuous, with emphasis on the relative ordering of
values in a data-flow-like framework. The designers of Signal
have also developed a clock calculus with which one can
reason about Signal programs. Lustre is a language similar
to Signal, rooted again in the notion of a sequence, and
owing much of its nature to Lucid.

6 Conclusions

Writing rich, reactive animations is a potentially tedious and
error-prone task using conventional programming method-
ologies, primarily because of the attention needed for issues
of presentation. We have described a system called Fran that
remedies this problem by concentrating on issues of model-
ing, leaving presentation details to the underlying implemen-
tation. We have given a formal semantics and described an
implementation in Haskell, which runs acceptably fast using
the Hugs interpreter. Future work lies in improving perfor-
mance through the use of standard compilation methods as
well as domain-specific optimization techniques; extending
the ideas to 3D graphics and sound; and investigating other
applications of this modeling approach to software develop
ment.

Our implementation of Fran currently runs under the
Windows ‘95/NT version of Hugs, a Haskell implementation
being developed collaboratively by Yale, Nottingham, and
Glasgow Universities. It ISconvenient for developing animw
tion programs, because of quick turn-around from modifica-
tion to execution, and it runs with acceptable performance,
for a bytecode interpreter. We expect marked performance
improvement once Fran is running under GHC (the Glasgow
Haskell Compiler). Even better, when these two Haskell im-
plementations are integrated, man programs will be conve-
nient to develop and run fast. The Hugs implementation,
which includes the entire Fran system, may be retrieved from

Acknowledgements We wish to thank Jim Kajiya
for early discussions that stimulated our ideaa for modeling
reactivity; Todd Knoblock who helped explore these ideas as
well as many other variations; John Peterson and Alastair
Reid for experimental implementations; Philip Wadler for
thoughtful comments that resulted in simpli~ing the seman-
tic model; and Sigbjorn Finne for helping with the imple-
mentation of Fran. We also wish to acknowledge funding of

this project from Microsoft Research, DARPA/AFOSR un-
der grant number F30602-96-2-0232, and NSF under grant
number CCR-9633390.

http: //ww. haskell. erg/hugs. Although this paper will
give the reader an understanding of the technical ideas un-
derpinning Fran, its power as an animation engine (and how
much fun it is to play with!) can only be appreciated by us-
ing it.

271

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Kavi Arya. A functional approach to animation. Com-
puter Graphics Forum, 5(4) :297–31 1, December 1986.

Kavi Arya. A functional animation starter-kit. Journal
of Functional Progmmmang, 4(1):1–18, January 1994.

Joel F. Bartlett. Don’t fidget with widgets, draw! Tech-
nical Report 6, DEC Western Digital Laboratory, 250
University Avenue, Palo Alto, California 94301, US,
May 1991.

P. Caspi, N. Halbwachs, D. Pilaud, and J.A. Plaice.
Lustre: A declarative language for programming syn-
chronous systems. In Id th ACM Symp. on Principles
of Programming Languages, January 1987.

R.B. Dannenberg. The Canon score language. Com-
puter Music Journal, 13(1):47-56, 1989.

R.B. Dannenberg, C.L. Fraley, and P. Velikonja. A
functional language for sound synthesis with behavioral
abstraction and lazy evaluation. In Denis Baggi, editor,
Computer Genemted Music. IEEE Computer Society
Press, 1992.

Conal Elliott. A brief introduction to ActiveVRML.
Technical Report MSR-TR-96-05, Microsoft Re-
search, 1996. f tp: Ilf t.p. research. rnicroeof t. ccnnl
pub/tech-reportslWinter95-961tr-96-05. ps.

Conal Elliott, Greg Schechter, Ricky Yeung, and Salim
Abi-Ezzi. TBAG: A high level framework for interac-
tive, animated 3D graphics applications. In Andrew
Glaeaner, editor, Proceedings of SIGGRAPH ’94 (Or-
lando, Florida), pages 421-434. ACM Press, July 1994.

John Peterson et. al. Ha.s.kell 1.3: A non-
strict, purely fictional language. Technical Report
YALEU/DCS/RR- 1106, Department of Computer Sci-
ence, Yale University, May 1996. WWW version at
http: //haskell. cs. yale. edulhaskell-report.

Sigbjorn Finne and Simon Peyton Jones. Pictures: A
simple structured graphics model. In Glasgow Func-
tional Progmmming Workshop, Ullapool, July 1995.

Thierry Gautier, Paul Le Guernic, and Loic Besnard.
Signal: A declarative language for synchronous pro-
gramming of real-time systems. In Gilles Kahn, edi-
tor, Iimctional Progmmming Languages and Computer
Architecture, volume 274 of Lect Notes in Computer
Science, edited by G’. Goos and J. Hartmani-s, pages
257-277. Springer-Verlag, 1987.

Peter Henderson. Functional geometry. In ACM Sym-
posium on LISP and Functional Progmmming, pages
179-187, 1982.

Paul Hudak, Tom Makucevich, Syam Gadde, and
Bo Whong. Haskore music notation - an algebra of
music, September 1994. To appear in the Journal
of Functional Programming; preliminary version avail-
able via ftp: //nebula. aysternsz. cs. yale. edulpubl
yale-f p/papers/haskore/hmn-lhs. ps.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Simon Peyton Jones, Andrew Gordon, and Sigbjorn
Finne. Concurrent Haskell. In ACM Symposium on the
Principles of Programming Languages, St. Petersburg
Beach, Florida, January 1996.

Peter Lucas and Stephen N. Zilles. Graphics in an ap-
plicative context. Technical report, IBM Almaden R.e
search Center, 650 Harry Road, San Jose, CA 95120-
6099, July 81987.

0. Orlarey, D. Fober, S. Letz, and M. Bilton. Lambda
calculus and music calculi. In Prowedings of Inter-
national Computer Music Conference. Int’1Computer
Music Association, 1994.

William H. Press, Saul A. Teukolaky, William T. Vet-
terling, and Brian P. Flannery. Numerical Recipes in C:
The Art of Scientific Computing (2nd cd.). Cambridge
University Press, Cambridge, 1992. ISBN 0-521-43108-
5.

John H. Reppy. CML: A higher-order concurrent lan-
guage. Proceedings of the ACM SIGPLAN ’91 Confer-
ence on Programming Language Design and Implemen-
tation, pages 293–305, 1991.

Greg Schechter, Conal Elliott, Ricky Yeung, and Salim
Abi-Ezzi. Functional 3D graphics in C++ - with
an object-oriented, multiple dispatching implement
tion. In Proceedings of the 1994 Eurogmphics Object-
Oriented Gmphics Workshop. Eurographics, Springer
Verlag, 1994.

John M. Snyder. Interval analysis for computer graph-
ics. In Edwin E. Catmull, editor, Computer Gmphics
(SIGGRAPH ’92 Proceedings), volume 26, pages 121-
130, July 1992.

W.W. Wadge and E.A. Ashcroft. Lucid, the Dataflow
Progmmming Language. Academic Press U.K., 1985.

Philip Wadler. Comprehending monads. In Proceedings
of Symposium on Lisp and Fhctional Programming,
pages 61–78, Nice, France, June 1990. ACM.

S.N. Zilles, P. Lucas, T.M. Linden, J.B. Lotspiech, and
A.R. Harbury. The Escher document imaging model. In
Proceedings of the ACM Conference on Document Pro-
cessing Systems (Santa Fe, New Mezico), pages 159-
168, December 5–9 1988.

272

Appendix A: Haskell Code for Predicate Event Detection

type BooIB = Behavior Bool
type TimeI = Ivl Time

predicate :: BooIB -> Time -> Event ()

predicate cond tO = predAfter cond tO 1
where

predAfter cond tO width =
predIn cond (tO ‘Upto’ tO+width) (\ cond’ ->
predAfter cond’ (tO+width) (2*width))

predIn :: BooIB -> TimeI -> (BooIB -> Event ()) -> Event ()
predIn cond iv tryNext =

case valI of
False ‘Upto’ False -> -- no occurrence

-- Note lower bound and try the next condition.
timeIsAtLeast hi (tryNext cond’)

False ‘Upto’ True -> -- found at least one
if hi-mid f= eventEpsilon
then constEv mid ()
else predIn cond (lo ‘Upto’ mid) (\ midCond ->

predIn midCond (mid ‘Upto’ hi) tryNext)
True ‘Upto’ True -> constEv 10 () -- found exactly one

where
10 ‘Upto’ hi = iv
mid = (hi+lo)/2
ivLeftTrimmed = 10 + leftSkipWidth ‘Upto’ hi
(valI,cond’) = cond ‘during’ ivLeftTrimmed

-- Interval size limit for temporal subdivision
eventEpsilon = 0.001 :: Time
-- Simulate left-open-ness via a small increment
leftSkipWidth = 0.0001 :: Time

273

