
4/9/13

1

1

CS 4100
Pascal Highlights

April 8, 2013

Based on slides by Istvan Jonyer
Book by MacLennan

2

Chapter 5:
Return to Simplicity: Pascal

•  1964 IBM: PL/I (Programming Language one)
evolves to be a huge language
–  Union of Fortran, Algol and COBOL (rather than

their intersection)
–  Swiss Army Knife Approach
–  Language is hard to use

•  Proponents say, enough to learn subset of PL/I
•  In reality, due to feature interaction, this is not possible

•  Hard (or even futile) to design to design a
language that is everything to all
programmers

3

Extensible Languages

•  Another approach is to design a small
‘kernel’ language and make it
extensible
– Kernel provides basic functionality
– Extensibility should please everyone

4

Extensions: Operators
•  Operator extension (vs overload)

–  Ability to create new operators
–  Example: symmetric difference of real numbers
operator 2 x # y;
 value x, y; real x, y;
 begin
 return abs(x – y)
 end

–  Allows:
if l # r > 0 then …

•  C++ has operator overload, variation of this

5

Extensions: Syntax
•  Syntax macros allowed general syntax

extension
real syntax sum from i = lb to ub of elem;
 value lb, ub;
 integer lb, ub, i; real elem;
 begin real s; s := 0;
 for i := lb step 1 until ub do
 s := s + elem;

 return s;
 end;

–  Allows:
total := sum from k = 1 to N of Wages[k];

6

Issues with Extensibility
•  Inefficiency

–  New syntax is translated to kernel constructs
–  Inefficiencies are magnified

•  Poor diagnostics
–  Compiler errors are issued at kernel-level, which

may be confusing to programmer
–  Language is hard to read, since people make up

their own syntax
•  Upside

–  Research on minimal requirement for PL’s

4/9/13

2

7

Move Toward Simplicity
•  Niklaus Wirth suggests changes to

Algol-60
– Non-numeric data types
– Removing baroque features
– Maintain efficiency (compile and run-time)
– Can be taught systematically

•  Implements Algol-W (after changes are
rejected by Algol committee)
– Evolves into Pascal, competed in 1970

8

Pascal - 3rd Generation

•  Developed 1968-1970
– 29 page report

•  Revised 1972
•  International Standard 1982
•  Popular teaching language

9

Pascal’s Syntax

•  Pascal’s syntax is like Algol’s (p. 171)
•  Major changes

– program … end.
– procedure <declarations> begin

<statements> end;
– var, const, type
–  for-loop: simplified
– case-statement

10

var, const, type
•  const

–  Constant parameter declaration
 const Max = 900;

•  type
–  Type declarations introduced by “type”
 type index = 1 .. Max;!

•  var
–  Variables declared after “var”

! var!
! ! i: index;
 sum, ave, val: real;!

11

Data Structures

•  Primitives are like Algol’s
–  real, integer, Boolean, char
– Char holds one character

•  Strings are arrays of chars

12

Enumeration Types: Issues
•  Problem:

–  How to manipulate non-numeric data?
–  Mon, Tue, Wed,… Male/Female,

•  Using number is very confusing (error prone)
–  today := 1; // Monday
–  tomorrow := today + 1; // next day
–  Issues: Sunday: 0 or 1? Start week with Monday?

•  Assign numbers to meaningful variables
–  Mon = 1, Tue = 2, … male = 0, female = 1, …

•  Security Issue: compiler allows meaningless
operations

•  Year : = (month + male)/DayOfWeek

4/9/13

3

13

Enumeration Types
•  Pascal introduces enumeration types

type
 month = (Jan, Feb, Mar, Apr, May, …);
 sex = (male, female);
var
 thisMonth : month;
 gender : sex;
begin
 thisMonth := Apr;
 gender := female;

•  Supported operations for all enumerated types
 :=, succ, pred, =, <>, <, =, >, <=, >=

14

Enumeration Types
•  Advantages

– High level
•  Lets programmers write what they mean

– Secure
•  Type checking is performed
•  No meaningless operations

– Efficient
•  Allows optimization of storage
•  E.g.: Days of week can be stored in 3 bits

15

Subrange Types
•  Improve security by allowing variable to take

on values meaningful for their use only
var DayOfMonth: 1 .. 31;
type Weekday = Mon .. Fri;
–  Checking of valid values as part of type checking
–  Many programming errors come down to subrange

violations (array out of bounds)
–  Efficient: Allows compact storage of variable
–  Subranges of discrete types are allowed

•  integer, enumerated, char

16

Set Types
•  Pascal provides facilities for sets

set of <ordinal type>
–  Ordinal type: enumeration, char, Boolean,

subrange
–  Not integer or real

var S, T: set of 1..10;
–  S, T can hold a set of numbers between 1 and 10

•  vs a single number between 1 and 10:

 var S, T: 1..10;

17

Efficiency of Sets
•  Set types are restricted to be ordinal to

be efficient
var S, T: set of 1..10;
– S, T take only 10 bits to represent: 1 bit for

each number
•  Bit = 0 means number is not is set
•  Bit = 1 means number is in set

– S := [1,2,3,5,7];
1 2 3 4 5 6 7 8 9 10

S = 1 1 1 0 1 0 1 0 0 0
18

Set Operations
•  Initialization/Assignment

[]
T := [1..6];

•  Membership
in
if 4 in T then …

•  Union, intersection, difference
+, *, -
S * T, S + T, …

•  Comparisons
–  Subset, equality, non-equality
–  <=, >=, =, <>
–  Proper subset (<) is not provided

4/9/13

4

19

Efficiency of Sets
•  Sets are implemented using bit masks

– Therefore, operations on sets can be
implemented using logical operations

–  Intersection: logical and
– Union: logical or
– Difference: logical exclusive or

•  Logical operations are the fastest a
computer can do

•  Memory efficiency: 1 bit per element
20

Sets

•  Considered an example of elegance
– High-level
– Readable
– Efficient
– Secure

21

Elegance Principle

•  Confine your attention to things that
look good because they are good

22

Array Types
•  Arrays are more general than Algol’s

– Base type of arrays can be non-primitives
–  Index types are introduced
– Subscripts can be other than integers

•  Char, subrange, enumerated types
var A: array [1..100] of real;
var Occur: array [char] of integer;
var HoursWorked: array [Mon..Fri] of 0..24;

for day := Mon to Fri do
 TotalHours := TotalHours + HoursWorked[day];

23

Dimensions
•  Only single-dimension arrays are

allowed!!!
•  However:

– Base type of array can be another array!!!
var M: array [1..20] of array [1..100] of real;

– Dereferencing: M[3][5]
•  Syntactic sugar:
 var M: array [1..20, 1..100] of real;

 M[3, 5]
(Doesn’t affect functionality, sweeter for human use.)

24

Static Arrays Only

•  Algol’s dynamic arrays are not
supported
– Type checking is done at compile time
– Array bounds are part of array type
– Hence, only static arrays are supported

4/9/13

5

25

Record Types
•  Pascal provides the ability to group

heterogeneous data
–  Versus homogeneous, using arrays
–  Can contain any other type, even other records

 type person =
 record
 name: string;
 age: 16..100;
 salary: 10000..100000;
 sex: (male, female);
 hireDate: date;
 end;
 string = array [1..30] of char;

26

Dereferencing Records

•  Dereferencing is done using the ‘.’
var today: date;
newhire.age := 25;
newhire.hireDate := today;
newhire.hireDate.month := Mar;
if newhire.name[1] = ‘A’ then …
employee[en].hireDate.year := 2004;

•  Opening one record for multiple access
with newhire do
 begin
 age := 25;
 hireDate := today;
 hireDate.month := Mar;
 end;

27

Variant Records
•  Pascal supports saving storage using variant

records; allows alternative structures
–  Not all components of a record may be used at the

same time
•  E.g.: Plane altitude and location on ground

–  C: union
•  Union is unsafe as it allows access to any member

–  Pascal attempts to solve this security problem
•  Access only members allowed by tag field
•  Initialization not required after tag value change, so type

system can be circumvented after all…

28

Variant Record Example
type plane = record
 flight: 0..999;
 equipment: (B727, A343, B747);
 case status: (inAir, taxi, atTerminal) of

 inAir: (
 altitude: 0..999999;
 heading: 0..359);
 taxi: (
 location: airport;
 runway: runwayNumber);
 atTerminal: (
 parked: airport;
 gate: 1..100);

end;

29

Pointers
•  Pascal provides typed pointers, which

are more secure than untyped ones
var p: ↑real;
 x: real;
 c: char;
begin
 new(p);
 p↑ := 3.14159;
 c := p↑; {Illegal!}
end;
–  If P was untyped (p: ↑pointer), assignment to c would be

allowed (and meaningless)

30

Type Equivalence

•  Type checking requires that only variables
with identical types can be compared/
assigned to each other

•  What does ‘identical’ mean?
–  Structural equivalence

•  Types having the same structure are identical
var x: record id: integer; w: real end;
var y: record id: integer; w: real end;

–  Name equivalence
•  Types having the same name are identical

4/9/13

6

31

Structural equivalence
type person = record id:integer; weight real; end
type car = record id:integer; weight real; end
var x: person;
var y: car;
x:= y;

–  Legal by structural equivalence
–  Probably don’t want
–  Name equivalence fixes this - person and car are different names

32

Name Structures

•  Name binding mechanisms in Pascal
– Constant bindings
– Type bindings
– Variable bindings
– Procedure and function bindings
–  Implicit enumeration bindings
– Label bindings

33

Constants
•  Pascal introduces constant declarations

const <name>=<constant>;
const MaxArray = 100;
– Allows the naming of constants in program
– Numbers should not be used in programs

•  Application of Abstraction Principle

34

Constants - Limitations
•  Constant cannot be described by an

expression
–  Illegal:
const MaxArray = MaxData - 1;

•  Expressions are not allowed in variable
and type declarations
–  Illegal:
var A: array [0.. MaxData – 1] of real;

35

Procedure Constructor
•  Procedure declaration in Pascal has a strict structure

procedure <name>(<formals>)
 <label declarations>

 <const declarations>

 <type declarations>

 <var declarations>

 <procedure and function declarations>

begin
 <statements>

end

•  Similar to Algol’s
–  Scope essentially the same

•  Declarations: entire block including declarations and statements
•  Formals: local declarations and statements

•  Names bound before they are used to support one-pass compilation

36

Mutual Recursion
procedure P(…);
begin
 .
 Q(…);
 .

end;
procedure Q(…);
begin
 .
 P(…);
 .

end;

4/9/13

7

37

Procedure Constructor
•  Opposite of top-down

–  Uppermost procedures first, then lower ones they
call

•  Mutual recursion
–  Cannot define both procedures before one is

called
•  Pascal’s solution

–  “forward” declaration of procedures allows
recursion, and observation of structure principle
 procedure Q(…); forward;

38

No Blocks

•  Pascal eliminates Algol’s blocks
– Compound statements but no blocks
– Variable declarations are only allowed

before begin in procedures and functions
– Simplifies name structures
– Complicates efficient use of memory

•  Storage shared only between disjoint
procedures

39

Control Structures

•  Pascal includes more control structures
than Algol-60, but they are simpler
– Provides simple I/O
–  Introduces more structured control

structures (structure principle)
•  1-entry point 1-exit point controls

–  Includes goto (rarely needed)
–  Includes recursive procedures

40

for-Loop is Austere
•  Pascal removes the baroque for loop, in

favor of one simpler than Algol’s
 for <name> := <exp> {to|downto} <exp> do
 <statement>

– Only step size of 1 is allowed (+1 & -1)
•  May be too restrictive

– Bounds are computed once, on entry
•  Called definite iterator

–  Always executes a definite number of times unless goto

41

Leading & Trailing Decision
Loops

•  Indefinite iterators:
–  Loop is controlled by condition, not counter
–  Condition is tested each time

•  Versus pre-computed in for-loop

•  Leading Decision loop
while <condition> do <statement>

•  Trailing Decision loop
repeat <statement>+ until <condition>

•  Mid-Decision loop
–  Can be implemented using “while true do”

and goto 42

Pascal’s case-Statement
•  Pascal introduces the labeled,

structured case-statement
case <expression> of
 1: begin <statements> end;
 2, 3: begin <statements> end;
 4: begin <statements> end;
 ...
end case;
– This case-statement is self-documenting

4/9/13

8

43

Labels in case-Statement

•  Case labels can be labels from
enumeration types
case nextFlight.status of
 inAir: begin <statements> end;
 onGround: begin <statements> end;
 atTerminal:begin <statements> end;
end case;

44

Parameter Passing

•  Pass by value
– Exactly like before, in Algol-60

•  Pass by reference
– Allows output parameters
– Replaces pass by name
– Only allows meaningful variables to be

written into (unlike Fortran)

45

Pass as Constant
•  Pass as constant was originally specified

instead of pass by value
–  Like pass by value, but parameter could not be

modified in callee
•  Safe

–  Implemented as pass by reference
•  Efficient

–  Replace by pass by value, since pass as constant
can be circumvented using scoping (p 202)

•  C++ provides this functionality by explicit pass by
reference and const definitions (f(const int &a))

46

Two Orthogonal Issues

•  Input vs output parameters
•  Copy value vs pass address
•  Decisions should be separated

47

Goals

•  Main goal: good teaching language
– Reliability
– Simplicity
– Efficiency

•  Successful!
•  Third Generation

