
4/16/13

1

1

CS 4100
LISP

April 17, 2013
Based on slides by Istvan Jonyer

Book by MacLennan
Chapters 9, 10, 11

2

Fifth Generation

•  Skip 4th generation: ADA
– Data abstraction
– Concurrent programming

•  Paradigms
– Functional: ML, Lisp
– Logic: Prolog
– Object Oriented: C++, Java

3

Chapter 9:
List Processing: LISP

•  History of LISP
–  McCarthy at MIT was looking to adapt high-level

languages (Fortran) to AI - 1956
–  AI needs to represent relationships among data

entities
•  Linked lists and other linked structures are common

–  Solution: Develop list processing library for Fortran
–  Other advances were also made

•  IF function: X = IF(N .EQ. 0, ICAR(Y), ICDR(Y))
•  List processing and conditional statement combined

4

What do we need?

•  Recursive list processing functions
•  Conditional expression

•  First implementation
–  IBM 704
– Demo in 1960

•  Common Lisp standardized

5

Example LISP Program

(defun make-table (text table)
 (if (null text)

 table
 (make-table (cdr text)

 (update-entry table (car
text))

)

)
)

•  Called S-expressions (Symbolic) 6

Central Idea: Function
Application

•  There are 2 types of languages
–  Imperative

•  Like Fortran, Algol, Pascal, C, etc.
•  Routing execution from one assignment statement to

another

–  Applicative
•  LISP
•  Applying a function to arguments

–  (f a1 a2 … an)
•  No need for control structures

4/16/13

2

7

Prefix Notation

•  Prefix notation is used in LISP
–  Sometimes called Polish notation (Jan Lukasiewicz)

•  Operator comes before arguments
•  (plus 1 2) same as 1 + 2 in infix
•  (plus 5 4 7 6 8 9)

•  Functions cannot be mixed because of the list
structure

•  (As in Algol: 1 + 2 – 3)
•  LISP is fully parenthesized
•  No need for precedence rules

8

cond Function

(cond
((null x) 0)
((eq x y) (f x))
(t (g y)))

•  Equivalent to
if null(x) then 0
elsif x = y then f(x)
else g(y)

9

Function Definition
(defun make-table (text table)
 (if (null text)
 table
 (make-table (cdr text)
 (update-entry table (car text))
)
)

)

•  Function definition is achieved by calling a
function(!) called defun, with arguments
–  Name (make-table)
–  Parameters (text table)
–  Body (if …) 10

Everything Is a List

•  Why is everything a list in LISP?
– Simplicity Principle

•  A language should be as simple as possible.
There should be a minimum number of
concepts, with simple rules for their
combination.

•  If there is only one basic mechanism in the
language, the language is easier to learn,
understand, and implement.

11

The List is the Data Structure

•  Lists contain symbolic data
(set ‘text ‘(to be or not to be))
–  Lists like (to be or not to be) can be manipulated

like numbers in other languages (compared,
concatenated, split, passed to functions,…)

•  Atoms
–  The list (to be or not to be) has 4 atoms

•  to, be, or, not
–  Functions are provided for manipulation of atoms

•  Lists of lists
((to be or not to be) (that is the question))

12

Programs Are Lists
•  Programs are also represented as lists

–  (make-table text nil)!
•  Can be a list

–  with atoms make-table, text, and nil
•  Can be a function

–  ‘make-table’ with 2 arguments

•  How do we tell apart the program from a data
list?
–  Quoted lists are not interpreted:

• (set ‘text ‘(to be or not to be))!
–  Unquoted ones are interpreted

• (set ‘text (to be or not to be))
 (function: to)

4/16/13

3

13

Implications?

•  If programs are lists
–  and data is also list
–  then we can generate a list that can be interpreted

as a program
•  In other words

–  We can write a program to write and execute
another program

–  Useful in artificial intelligence
•  Reductive aspects?

14

LISP Is Interpreted

•  Most LISP systems provide interactive
interpreters
– One can enter commands into the

interpreter, and the system will respond
> (plus 2 3)!
5!
> (eq (plus 2 3) (difference 9 4))!
t!! ! !(means ‘true’)

15

Pure vs Pseudo-Functions

•  Pure functions
–  plus, eq, …
–  Only effect is the computation of a value

•  Pseudo-functions
–  Has side-effect; more like a procedure
–  set

•  (set ‘text ‘(to be or not to be))
•  Side effect:

–  Sets the value of text to (to be or not to be)
•  Return value:

–  (to be or not to be)

16

Data Structures

•  Primitives
–  Numbers

•  Operations: plus, minus, times, eq, etc.
–  Non-numeric atoms

•  Strings of characters used as symbols
–  Much like enumerated types in Pascal
–  Not used as strings

•  Operations: eq
•  Special atoms

–  t: true
–  nil: false; non-existent atom; empty list

17

Data Constructor
•  The data constructor is the list
•  Lists can have 0, 1 or more elements

– Observes the Zero-One-Infinity principle
– Empty list: ‘() or nil

•  All lists are non-atomic (except empty
list)
> (atom ‘()) !or (atom nil) or (atom 5)!
t!
> (atom ‘(to be)) or (atom ‘(()))!
nil!

18

Car and Cdr
•  Accessing parts of a list

–  Car
•  Accesses first element of the list
>(car ‘(to be or not to be))!
to!
>(car ‘((to be) or (not to be)))!
(to be)!
•  Returns an element

–  cdr
•  Accesses rest of the list (list without first element)
>(cdr ‘(to be or not to be))!
(be or not to be)!
•  Returns a list

4/16/13

4

19

Combining car and cdr
•  How do we select the second element?

>(car (cdr ‘(to be or not to be)))!
be!

•  Third?
>(car (cdr (cdr ‘(to be or not to be))))!
or!

•  How about this?
(set ‘DS ‘((Don Smith) 45 30000 (Aug 4 80)))!

–  Select day of hire
>(car (cdr (car (cdr (cdr (cdr DS))))))!
4!

•  This can be simplified:
>(cadadddr DS)!
4!

20

Defining Functions
(set ‘DS ‘((Don Smith) 45 30000 (Aug 4 80)))

•  Define functions to replace cadadddr
(defun hire-date (r) (cadddr r))!
(defun day (d) (cadr d))!
!
–  Now we can select the day of the hire date as
(day (hire-date DS))!

•  This is more readable and more maintainable

21

Property Lists

•  List like this are hard to maintain and read:
((Don Smith) 45 30000 (Aug 4 80))
–  We don’t know what elements mean
–  Hard to change the structure of the list

•  A better way is to use property lists:
(name (Don Smith) age 45 salary 30000 hire-date (Aug 4 80))
–  This way we can search for property name we

want (age) and return value (45)
–  Order of properties becomes immaterial
–  General form (p1 v1 p2 v2 … pn vn)

22

Accessing Property Lists
(name (Don Smith) age 45 salary 30000 hire-date (Aug 4 80))

•  How do we find the property?
–  If property we want is the first one, return second

element of list
–  else skip first 2 elements, and start over

•  In LISP (get property p of list l)
(defun getprop (p l)

 (if (eq (car l) p)
 (cadr l)
 (getprop p (cddr l))))

23

Association Lists
•  What if the property does not have a

value? (e.g. “retired”)
•  What is the property has more than a

single value?
– Of course, these can be solved using the

property list, if we understand the
properties of each property…

– A better, more foolproof way is to use
association-lists:

((name (Don Smith))
 (age 45)
 (salary 30000)
 (hire-date (Aug 4 80)))

24

Constructing Lists

•  Need inverse of car and cdr
–  car: get first of list
–  cdr: get rest of list

•  Inverse:
–  cons: append first of list to rest of list

>(cons ‘to ‘(be or not to be))!
(to be or not to be)!
>(cons ‘(to be) ‘(or not to be))!
((to be) or not to be)!

–  Returns a list

4/16/13

5

25

Appending Lists
>(cons ‘(to be) ‘(or not to be))!
((to be) or not to be)!

•  But we’d like (to be or not to be)
>(append ‘(to be) ‘(or not to be))!
(to be or not to be)!

•  How would we implement append ?
–  We need to extract and cons the last element of

the first list successively
(defun append (L M) !
!(if (null L)!
!! M!
!! (cons (car L) (append (cdr L) M))))!

26

[3]> (defun mappend (L M) (if (null L) M (cons
(car L) (mappend (cdr L) M))))!

MAPPEND!
!
[4]> (trace mappend)!
;; Tracing function MAPPEND.!
(MAPPEND)!
!
[5]> (mappend '(to be) '(or not to be))!
1. Trace: (MAPPEND '(TO BE) '(OR NOT TO BE))!
2. Trace: (MAPPEND '(BE) '(OR NOT TO BE))!
3. Trace: (MAPPEND 'NIL '(OR NOT TO BE))!
3. Trace: MAPPEND ==> (OR NOT TO BE)!
2. Trace: MAPPEND ==> (BE OR NOT TO BE)!
1. Trace: MAPPEND ==> (TO BE OR NOT TO BE)!
(TO BE OR NOT TO BE)!
!

27

Atoms

•  LISP was written for AI
–  to represent complex relationships among objects
–  Objects can have many properties in real life;

Atoms allow for modeling this
•  Each atom comes with its own property list,

and some built-in properties
–  pname (print name); mandatory
–  apval (applied value); to store data

•  If atom is bound to a value
–  expr (expression); to store program

•  If atom is bound to a program
28

Adding Properties to Atoms

•  Other, arbitrary properties may also be added to
an atom using putprop (not in our clisp: setf)

 (putprop atom propValue propName)!
!(putprop ‘France ‘Paris ‘capital)!

–  Paris, in this case, is also an atom
•  Find out the value of a property using get

>(get ‘France ‘capital)!
Paris!
>(get ‘France ‘pname)!
“France”!

29

Special Property: apval

•  Assigning a value to an atom
(set ‘Europe ‘(England France …))!
–  is the same as
(putprop ‘Europe ‘(England France …)
‘apval)!

‘Applied value’ points to the list the atom is
bound to

30

List Representation
•  Lists are represented as linked lists

 (to be or not to be)

 ((to 2) (be 2))
to be or not to be nil

to 2

/

be 2

/ /

4/16/13

6

31

Origins of car and cdr
•  First LISP was designed for the IBM 704

– 1 word had 2 fields
•  Address field
•  Decrement field

– car: “Content of Address part of Register”
– cdr: “Content of Decrement part of Register”

to be or

…

car cdr

32

Implementation of cons
•  car and cdr simply return the respective

parts of the register
•  cons has the job of constructing a new

register using two pointers
– Allocate new memory location
– Fill in left and right parts of new location

 (cons ‘to ‘(be or not to be))

to be or not to be nil

33

Sublists Can Be Shared
(set ‘L ‘(or not to be))!
(set ‘M ‘(to be))!
(set ‘N (cons (cadr M) L))!
(set ‘O (cons (car M) N))!

to

/

be or not to

/

be

M L

N

O

34

[10]> (set 'L '(or not to be))!
(OR NOT TO BE)!
[11]> (set 'M '(to be))!
(TO BE)!
[12]> (set 'N (cons (cadr M) L))!
(BE OR NOT TO BE)!
[13]> (set 'O (cons (car M) N))!
(TO BE OR NOT TO BE)!

35

List Structures Can Be Modified
•  Functions discussed so far do not

modify lists
•  Modifying lists is possible via

–  replaca (replace address part)
–  replacd (replace decrement part)

•  It is possible that more than one symbol
points to a list
– which can be modified using replaca and

replacd
– This can cause unexpected problems (like

equivalence in Fortran) 36

Iteration by Recursion

•  Iteration is done by recursion
•  Iteration is mostly needed to perform an

operation on every element of a list
–  This can be done using combination of

•  testing for end of list,
•  operating on first element, and
•  recursing on rest of the list
(defun plus-red (a)!
!(if (null a) nil!
! (plus (car a) (plus-red (cdr a)))))!

–  Notice: No array bounds are needed! Function is
very general

4/16/13

7

37

Iteration = Recursion

•  Theoretically, recursion and iteration have the
same power, and are equivalent

•  One can be translated to the other (although
may not be practical)
–  Recursion à iteration

•  Use iteration and keep track of auxiliary information in an
explicit stack

–  Iteration à recursion
•  Need to pass control information (variables)

38

Storage Reclamation
•  What happens to cons’d pointers that are no

longer in use?
•  Explicit reclamation is the obvious / traditional

way
–  C: malloc, calloc, realloc, free
–  C++: new, delete
–  Pascal: new, dispose

•  Issues
–  Complicates programming

•  Requires the programmer to keep track of pointers

–  Violates security of the environment
•  Memory freed, but still referenced (dangling pointers)

39

Automatic Storage Reclamation
•  It would be nice for the system to

automatically ‘reclaim’ storage no longer
used

•  System can keep track of number of
references to storage
–  When references decrease to 0, storage is

returned to ‘free-list’
•  Advantage:

–  Storage reclaimed immediately as last reference is
destroyed

•  Disadvantage:
–  Cyclic structures (points to itself) cannot be

reclaimed
40

Garbage Collection
•  A different approach is garbage collection

–  Do not keep track of references to location
–  When last reference is destroyed, we still do not do

anything, and leave the memory as garbage
(unused, non-reusable storage, littering the
memory)

–  Collect garbage if system runs out of storage
•  Mark all areas unused
•  Then examine all visible pointers and mark storage they

point to as ‘used’
•  Leftover is garbage, and can be put on free-list

–  This is called the mark-and-sweep method

41

Garbage Collection

•  Advantages
–  Fast until runs out of memory
–  No additional memory is needed for tracking

references
•  Disadvantages

–  Garbage collection itself can be slow
•  If memory is large, and have many references
•  Must halt entire system, since all dynamic memory must

be marked as unused first

•  Java uses this approach

