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Fifth Generation 

•  Skip 4th generation: ADA 
– Data abstraction  
– Concurrent programming 

•  Paradigms 
– Functional: ML, Lisp 
– Logic: Prolog 
– Object Oriented: C++, Java 
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Chapter 9: 
List Processing: LISP 

•  History of LISP 
–  McCarthy at MIT was looking to adapt high-level 

languages (Fortran) to AI - 1956 
–  AI needs to represent relationships among data 

entities 
•  Linked lists and other linked structures are common 

–  Solution: Develop list processing library for Fortran 
–  Other advances were also made 

•  IF function:  X = IF(N .EQ. 0, ICAR(Y), ICDR(Y)) 
•  List processing and conditional statement combined 
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What do we need? 

•  Recursive list processing functions 
•  Conditional expression 

•  First implementation 
–  IBM 704 
– Demo in 1960 

•  Common Lisp standardized 
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Example LISP Program 

(defun make-table (text table) 
 (if (null text) 

  table 
  (make-table (cdr text) 

    (update-entry table (car 
text)) 

  ) 

 ) 
) 

•  Called S-expressions (Symbolic) 6 

Central Idea: Function 
Application 

•  There are 2 types of languages 
–  Imperative 

•  Like Fortran, Algol, Pascal, C, etc. 
•  Routing execution from one assignment statement to 

another 

–  Applicative 
•  LISP 
•  Applying a function to arguments 

–  (f a1 a2 … an) 
•  No need for control structures 
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Prefix Notation 

•  Prefix notation is used in LISP 
–  Sometimes called Polish notation (Jan Lukasiewicz) 

•  Operator comes before arguments 
•  (plus 1 2)   same as 1 + 2 in infix 
•  (plus 5 4 7 6 8 9) 

•  Functions cannot be mixed because of the list 
structure 

•  (As in Algol: 1 + 2 – 3) 
•  LISP is fully parenthesized 
•  No need for precedence rules 
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cond Function 

(cond 
((null x) 0) 
((eq x y) (f x)) 
(t (g y)) ) 

•  Equivalent to  
if null(x) then 0 
elsif x = y then f(x) 
else g(y) 
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Function Definition 
(defun make-table (text table) 
 (if (null text) 
  table 
  (make-table (cdr text) 
    (update-entry table (car text)) 
  ) 
 ) 

) 

•  Function definition is achieved by calling a 
function(!) called defun, with arguments 
–  Name   (make-table) 
–  Parameters  (text table) 
–  Body   (if …) 10 

Everything Is a List 

•  Why is everything a list in LISP? 
– Simplicity Principle   

•  A language should be as simple as possible. 
There should be a minimum number of 
concepts, with simple rules for their 
combination. 

•  If there is only one basic mechanism in the 
language, the language is easier to learn, 
understand, and implement. 

11 

The List is the Data Structure 

•  Lists contain symbolic data 
(set ‘text ‘(to be or not to be)) 
–  Lists like (to be or not to be) can be manipulated 

like numbers in other languages (compared, 
concatenated, split, passed to functions,…) 

•  Atoms 
–  The list (to be or not to be) has 4 atoms 

•  to, be, or, not 
–  Functions are provided for manipulation of atoms 

•  Lists of lists 
((to be or not to be) (that is the question)) 
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Programs Are Lists 
•  Programs are also represented as lists 

–  (make-table text nil)!
•  Can be a list 

–  with atoms make-table, text, and nil 
•  Can be a function  

–  ‘make-table’ with 2 arguments 

•  How do we tell apart the program from a data 
list? 
–  Quoted lists are not interpreted:  

• (set ‘text ‘(to be or not to be))!
–  Unquoted ones are interpreted 

• (set ‘text (to be or not to be))  
 (function: to) 
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Implications? 

•  If programs are lists 
–  and data is also list 
–  then we can generate a list that can be interpreted 

as a program 
•  In other words 

–  We can write a program to write and execute 
another program 

–  Useful in artificial intelligence 
•  Reductive aspects? 
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LISP Is Interpreted 

•  Most LISP systems provide interactive 
interpreters 
– One can enter commands into the 

interpreter, and the system will respond 
> (plus 2 3)!
5!
> (eq (plus 2 3) (difference 9 4))!
t!! ! !(means ‘true’) 
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Pure vs Pseudo-Functions 

•  Pure functions 
–  plus, eq, … 
–  Only effect is the computation of a value 

•  Pseudo-functions 
–  Has side-effect; more like a procedure 
–  set 

•  (set ‘text ‘(to be or not to be)) 
•  Side effect: 

–  Sets the value of text to (to be or not to be) 
•  Return value: 

–  (to be or not to be) 
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Data Structures 

•  Primitives 
–  Numbers 

•  Operations: plus, minus, times, eq, etc. 
–  Non-numeric atoms 

•  Strings of characters used as symbols 
–  Much like enumerated types in Pascal 
–  Not used as strings 

•  Operations: eq 
•  Special atoms 

–  t: true 
–  nil: false; non-existent atom; empty list 
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Data Constructor 
•  The data constructor is the list 
•  Lists can have 0, 1 or more elements 

– Observes the Zero-One-Infinity principle 
– Empty list: ‘() or nil 

•  All lists are non-atomic (except empty 
list) 
> (atom ‘()) !or  (atom nil)  or  (atom 5)!
t!
> (atom ‘(to be)) or (atom ‘(()))!
nil!
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Car and Cdr 
•  Accessing parts of a list 

–  Car 
•  Accesses first element of the list 
>(car ‘(to be or not to be))!
to!
>(car ‘((to be) or (not to be)))!
(to be)!
•  Returns an element 

–  cdr 
•  Accesses rest of the list (list without first element) 
>(cdr ‘(to be or not to be))!
(be or not to be)!
•  Returns a list 
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Combining car and cdr 
•  How do we select the second element? 

>(car (cdr ‘(to be or not to be)))!
be!

•  Third? 
>(car (cdr (cdr ‘(to be or not to be))))!
or!

•  How about this? 
(set ‘DS ‘( (Don Smith) 45 30000 (Aug 4 80)))!

–  Select day of hire 
>(car (cdr (car (cdr (cdr (cdr DS))))))!
4!

•  This can be simplified: 
>(cadadddr DS)!
4!
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Defining Functions 
(set ‘DS ‘( (Don Smith) 45 30000 (Aug 4 80))) 

•  Define functions to replace cadadddr 
(defun hire-date (r) (cadddr r))!
(defun day (d) (cadr d))!
!
–  Now we can select the day of the hire date as 
(day (hire-date DS))!
 

•  This is more readable and more maintainable 
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Property Lists 

•  List like this are hard to maintain and read:  
((Don Smith) 45 30000 (Aug 4 80)) 
–  We don’t know what elements mean 
–  Hard to change the structure of the list 

•  A better way is to use property lists: 
(name (Don Smith) age 45 salary 30000 hire-date (Aug 4 80)) 
–  This way we can search for property name we 

want (age) and return value (45) 
–  Order of properties becomes immaterial 
–  General form (p1 v1 p2 v2 … pn vn) 
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Accessing Property Lists 
(name (Don Smith) age 45 salary 30000 hire-date (Aug 4 80)) 

•  How do we find the property? 
–  If property we want is the first one, return second 

element of list 
–  else skip first 2 elements, and start over 

•  In LISP (get property p of list l )  
(defun getprop (p l) 

   (if  (eq (car l) p) 
   (cadr l) 
   (getprop p (cddr l)) )) 
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Association Lists 
•  What if the property does not have a 

value? (e.g. “retired”) 
•  What is the property has more than a 

single value? 
– Of course, these can be solved using the 

property list, if we understand the 
properties of each property… 

– A better, more foolproof way is to use 
association-lists: 

( (name (Don Smith))  
  (age 45)  
  (salary 30000)  
  (hire-date (Aug 4 80)) ) 
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Constructing Lists 

•  Need inverse of car and cdr 
–  car: get first of list 
–  cdr: get rest of list 

•  Inverse: 
–  cons: append first of list to rest of list 

>(cons ‘to ‘(be or not to be))!
(to be or not to be)!
>(cons ‘(to be) ‘(or not to be))!
((to be) or not to be)!

–  Returns a list 
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Appending Lists 
>(cons ‘(to be) ‘(or not to be))!
((to be) or not to be)!

•  But we’d like (to be or not to be) 
>(append ‘(to be) ‘(or not to be))!
(to be or not to be)!

•  How would we implement append ? 
–  We need to extract and cons the last element of 

the first list successively 
(defun append (L M) !
!(if (null L)!
!!  M!
!!  (cons (car L) (append (cdr L) M)) ))!
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[3]> (defun mappend (L M) (if (null L) M (cons 
(car L) (mappend (cdr L) M))))!

MAPPEND!
!
[4]> (trace mappend)!
;; Tracing function MAPPEND.!
(MAPPEND)!
!
[5]> (mappend '(to be) '(or not to be))!
1. Trace: (MAPPEND '(TO BE) '(OR NOT TO BE))!
2. Trace: (MAPPEND '(BE) '(OR NOT TO BE))!
3. Trace: (MAPPEND 'NIL '(OR NOT TO BE))!
3. Trace: MAPPEND ==> (OR NOT TO BE)!
2. Trace: MAPPEND ==> (BE OR NOT TO BE)!
1. Trace: MAPPEND ==> (TO BE OR NOT TO BE)!
(TO BE OR NOT TO BE)!
!
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Atoms 

•  LISP was written for AI 
–  to represent complex relationships among objects 
–  Objects can have many properties in real life; 

Atoms allow for modeling this 
•  Each atom comes with its own property list, 

and some built-in properties 
–  pname (print name); mandatory 
–  apval (applied value); to store data  

•  If atom is bound to a value 
–  expr (expression); to store program 

•  If atom is bound to a program 
28 

Adding Properties to Atoms 

•  Other, arbitrary properties may also be added to 
an atom using putprop (not in our clisp: setf) 

 (putprop atom propValue propName)!
!(putprop ‘France ‘Paris ‘capital)!

–  Paris, in this case, is also an atom 
•  Find out the value of a property using get 

>(get ‘France ‘capital)!
Paris!
>(get ‘France ‘pname)!
“France”!

29 

Special Property: apval 

•  Assigning a value to an atom 
(set ‘Europe ‘(England France …))!
–  is the same as 
(putprop ‘Europe ‘(England France …) 
‘apval)!

‘Applied value’ points to the list the atom is 
bound to  
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List Representation 
•  Lists are represented as linked lists 

 (to be or not to be) 
 
 

 ((to 2) (be 2)) 
to be or not to be nil 

to 2 

/ 

be 2 

/ / 
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Origins of car and cdr 
•  First LISP was designed for the IBM 704 

– 1 word had 2 fields 
•  Address field 
•  Decrement field 

– car: “Content of Address part of Register” 
– cdr: “Content of Decrement part of Register” 

to be or 

… 

car  cdr  

32 

Implementation of cons 
•  car and cdr simply return the respective 

parts of the register 
•  cons has the job of constructing a new 

register using two pointers 
– Allocate new memory location 
– Fill in left and right parts of new location 

 (cons ‘to ‘(be or not to be)) 

to be or not to be nil 
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Sublists Can Be Shared  
(set ‘L ‘(or not to be))!
(set ‘M ‘(to be))!
(set ‘N (cons (cadr M) L))!
(set ‘O (cons (car M) N))!

to 

/ 

be or not to 

/ 

be 

M L 

N 

O 
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[10]> (set 'L '(or not to be))!
(OR NOT TO BE)!
[11]> (set 'M '(to be))!
(TO BE)!
[12]> (set 'N (cons (cadr M) L))!
(BE OR NOT TO BE)!
[13]> (set 'O (cons (car M) N))!
(TO BE OR NOT TO BE)!
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List Structures Can Be Modified 
•  Functions discussed so far do not 

modify lists 
•  Modifying lists is possible via 

–  replaca (replace address part) 
–  replacd (replace decrement part) 

•  It is possible that more than one symbol 
points to a list 
– which can be modified using replaca and 

replacd 
– This can cause unexpected problems (like 

equivalence in Fortran) 36 

Iteration by Recursion 

•  Iteration is done by recursion 
•  Iteration is mostly needed to perform an 

operation on every element of a list 
–  This can be done using combination of 

•  testing for end of list, 
•  operating on first element, and 
•  recursing on rest of the list 
(defun plus-red (a)!
!(if (null a)  nil!
!    (plus (car a) (plus-red (cdr a))) ))!

–  Notice: No array bounds are needed! Function is 
very general 
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Iteration = Recursion 

•  Theoretically, recursion and iteration have the 
same power, and are equivalent 

•  One can be translated to the other (although 
may not be practical) 
–  Recursion à iteration 

•  Use iteration and keep track of auxiliary information in an 
explicit stack 

–  Iteration à recursion 
•  Need to pass control information (variables) 

38 

Storage Reclamation 
•  What happens to cons’d pointers that are no 

longer in use? 
•  Explicit reclamation is the obvious / traditional 

way 
–  C: malloc, calloc, realloc, free 
–  C++: new, delete 
–  Pascal: new, dispose 

•  Issues 
–  Complicates programming 

•  Requires the programmer to keep track of pointers 

–  Violates security of the environment 
•  Memory freed, but still referenced (dangling pointers) 
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Automatic Storage Reclamation 
•  It would be nice for the system to 

automatically ‘reclaim’ storage no longer 
used 

•  System can keep track of number of 
references to storage 
–  When references decrease to 0, storage is 

returned to ‘free-list’ 
•  Advantage: 

–  Storage reclaimed immediately as last reference is 
destroyed 

•  Disadvantage: 
–  Cyclic structures (points to itself) cannot be 

reclaimed 
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Garbage Collection 
•  A different approach is garbage collection 

–  Do not keep track of references to location 
–  When last reference is destroyed, we still do not do 

anything, and leave the memory as garbage 
(unused, non-reusable storage, littering the 
memory) 

–  Collect garbage if system runs out of storage 
•  Mark all areas unused 
•  Then examine all visible pointers and mark storage they 

point to as ‘used’ 
•  Leftover is garbage, and can be put on free-list 

–  This is called the mark-and-sweep method 
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Garbage Collection 

•  Advantages 
–  Fast until runs out of memory 
–  No additional memory is needed for tracking 

references 
•  Disadvantages 

–  Garbage collection itself can be slow 
•  If memory is large, and have many references 
•  Must halt entire system, since all dynamic memory must 

be marked as unused first 

•  Java uses this approach 


