

 1

1

Pseudo-Code

CS4100
February 6, 2012

Based on slides by Istvan Jonyer

2

Design of a Pseudo-Code

• Remember: it’s 1950!
• Capabilities we want

– Floating point operation support (+,-,*,/,…)
– Comparisons (=,≠,<,≤,>,≥)
– Indexing
– Transfer of control
– Input/output

3

Hardware Assumptions

• The IBM 650 will serve as the hardware
– 1 word: 10 decimal digits + 1 sign
– 2000 byte memory

• 1000 for data
• 1000 for program

http://www-03.ibm.com/ibm/history/exhibits/650/650_intro2.html 4

Language Design

• 1 word can be enough to specify a 3-
operand instruction
– Operation: sign + 1 digit

• Supports 20 operations
– 3 3-digit operands

• Each accessing memory locations in data area
– Orthogonal design:

• Operations should be more intuitive than
machine code

• Use the sign to get more orthogonality

5

Specifics

• Instruction format:
– op src1 src2 dst
– E.g.: x+yàz : +1 010 150 200

• “Add values at location 010 and 150, and save
it to location 200”

– Orthogonal design: subtract should be ‘-1’

6

Arithmetic Operations

square rootx23
/*2
-+1

-+

 2

7

Comparisons

• Comparisons alter control flow
– if x < y then go to z

– First 2 operands are data locations, dst is
address of next instruction

8

Extended Instruction Table

square rootx23
/*2

<≥5
≠=4

-+1

-+

9

What else do we need?

• Moving
– Could do “add 0” to an address, but that

could be inefficient
– Dedicate an operation to moving
– Second operand is not used
– “+0 src 000 dst”

10

Indexing
• Need

– Base address
– Index

• Base and index take up 2 operands; what can we do
with 3rd?
– Save value of indexed element for other operations

• Index operations:
– Get: xiàz : +6 xxx iii zzz

– Put: xàyi : -6 xxx yyy iii

11

Looping

• Looping through the elements of an
array is frequently used

• What’s needed?
– Iterator variable (array index i)
– Upper bound (n)
– Address of beginning of loop (d)
– “+7 iii nnn ddd”

12

Principles of Programming

• The abstraction principle
– Avoid requiring something to be stated

more than once; factor out the recurring
pattern.

 3

13

Input/Output

• Program needs to read data from input
and write data to output
– Needs only a memory location to read from

or write to
– Read: “+8 000 000 dst”
– Print: “-8 000 000 src”

14

Complete Instruction Set

Move0

<≥5
≠=4

square rootx23
/*2
-+1

PrintRead8
Incr. & test7

Stop9

PutArrayGetArray6

-+

15

Program Structure

Initial data
values

Program
instructions

Input

data

+9999999999

+9999999999

16

Implementing the Interpreter

• How to implement the interpreter for our
pseudo-coded program?
– Model interpreter behavior after manual

execution
– Cheat: Implement using a high-level

language J
– We have to simulate the hardware in

software

17

Data Structures

• What data structures are needed to
simulate the IBM 650?
– Data memory
– Program memory
– Instruction pointer

18

Structure of the Interpreter
1. Read the next instruction
2. Decode the instruction
3. Execute the operation
4. Continue from step 1
• Where do we update the instruction

pointer (IP)?
– Step 4? No: we may need to jump, which

would be overwritten
– Increment in step 1; overwrite if needed

 4

19

Decoding Instructions

• Extract part of instruction
– dst = instruction mod 1000

• Select operation
– Big switch-statement (case-statement)

• Arithmetic operations
– Straight-forward

• Control-flow
– IP may also need to be altered

20

Labeling

• What if we need to insert an instruction?
– All addresses would have to be shifted, and the code

updated

• Solution:
– Use labels for loops, instead of absolute memory addresses
– Define label:

• -7 0LL 000 000

• Only 100 numeric labels are possible (00-99)
– Modify control flow instructions to jump to labels

21

Interpreting Labels

• How do we handle labels in the
interpreter?
– Look through all instructions from

beginning of program?
• Yes, but that is slow. This is how some

interpreters work. (BASIC, for instance)
– Create label table with absolute addresses

for labels and bind addresses
• Much faster. Compilers do it this way.

22

Principles of Programming

• Labeling principle
– Do not require users to know absolute

numbers or addresses. Instead associate
labels with number or addresses.

23

Data Labels?

• If we can jump to a label, we could use
labels for variables as well

• Construct symbol table
• This idea is easily extended to

instructions as well to form a symbolic
pseudo-code

24

Data Declaration
• We could extend the language to include

symbols not only for program instructions but
for data declarations as well

• In initial data values:
+0 sss nnn 000
±dddddddddd
– Declare n values of d referenced by symbol s
– Symbolic notation:
VAR sss nnn
±dddddddddd
– n=1 : simple variable
– n>1 : array

 5

25

Debugging?

• Debugging always has to be done…
• Can facilitate debugging by printing

instructions executed in order
• Interpreter can include trace flag

if trace is enabled

print IP, instruction

26

Complete Symbolic Language

move MOVE0

< LT≥ GE5
≠ NE= EQ4

square root SQRTX2 SQR3
/ DIV* MULT2
- SUB+ ADD1

output PRNTinput READ8
Label LABLIncr. & test LOOP7

Trace TRACend STOP9

PutArray PUTAGetArray GETA6

-+

27

Complete Symbolic Language

• Additional symbols
– LABL nn

• Declare label n
– VAR sss nnn

• Declare variable s[n]
– END

• Delimiter between variables, program and input
• Defined as -9999999999

– TRAC
• Enable/disable tracing
• Tracing is turned off by default. Encountering this

operation toggles tracing.
28

Sample Program
VAR ZRO 1
+0000000000
VAR I 1
+0000000000
VAR SUM 1
+0000000000
...
END
READ N
LABL 20
READ TMP
GE TMP ZRO 40
SUB ZRO TMP TMP
LABL 40
PUTA TMP DTA I
LOOP I N 20
...
STOP
END
+0000000005
+0000000020
...

29

Principles of Programming

• Security principle
– No program that violates the definition of

the language, or its own intended structure,
should escape detection.

