

 1

1

Pseudo-Code

CS4100
February 3, 2012

Based on slides by Istvan Jonyer

2

Role of programming languages

• What is a programming language?
– Formal Method

• Describe a solution to a problem
• Organize a solution to a problem
• Reason about a solution to a problem

– Interface between user and machine
• Trade-off

– Ease of use - high level
– Efficiency - low level

3

Role of programming languages

• What is a programming language?
– A language that is intended for the

expression of computer programs and that
is capable of expressing any computer
program.

4

Readability

• Is machine code readable?
– 000000101011110011010101011110

• Assembly language?
– mov dx tmp
– add ax bx dx

• Is high-level code readable?
– http://www0.us.ioccc.org/years.html#2004

• http://www0.us.ioccc.org/2004/arachnid.c
• http://www0.us.ioccc.org/2004/anonymous.c

5

Pseudo-Code

• An instruction code that is different than
that provided by the machine

• Has an interpretive subroutine to
execute

• Implements a virtual computer
– Has own data types and operations

• (Can view all programming languages
this way)

6

Pseudo-Code Interpreters

• Is programming difficult?
• In the 1950’s, it was…

– E.g.: IBM 650
• No programming language was available (not

even assembler)
• Memory was only a few thousand words
• Stored program and data on rotating drum
• Instructions included address of next instruction

so that rotating drum was under next instruction
to execute and no full rotations were wasted

• Problem: What if address is already occupied?

 2

7

Part of an IBM 650 program
LOC OP DATA INST COMMENTS
1107 46 1112 1061 Shall the loop box be used?

1061 30 0003 1019

1019 20 1023 1026 Store C.

1026 60 8003 1033

1033 30 0003 1041

1041 20 1045 1048 Store B.

1048 60 8003 1105

1105 30 0003 1063

1063 44 1067 1076 Is an 02-operation called for?

1076 10 1020 8003

8003 69 8002 1061 Go to an 01-subroutine.
8

Program DESIGN Notations
• Complexity led to development of program

design notations
– Memory layout
– Control flow

• Flow Diagrams (von Neumann & Goldstine)
• Later: Flowcharts

– Mnemonics
• To help remember instruction codes
• Like assembly language today

• These were designed to help the programmer,
not to be interpreted by computers

9

Floating Point Arithmetic
• Earliest built-in floating point processing:

IBM 704
• Before that, it had to be simulated

– Manual scaling
• Multiply by constant factor
• Use integer processor
• Manually scale back result
• Complicated and error-prone process

10

• IBM 650 and card
reader

http://www-03.ibm.com/ibm/history/exhibits/650/650_album.html

IBM 704 Operator’s Console
http://www-03.ibm.com/ibm/history/exhibits/mainframe/mainframe_2423PH704C.html

11

Indexing
• Array is one of most common data structures
• Indexing

– “Adding a variable index quantity to a fixed address
in order to access the element of an array”

– Indexing was not supported by early computers
– They used address modification

• Alter the program’s own data accessing instruction
• Compute actual address from pointer and offset, then write

into instruction’s data address portion

– Very error prone process
12

Pseudo-Code Interpreters
• Subroutines were commonly used to perform

floating-point operations and indexing
• Consistent use of these simplified the

programming process
• This simulated instructions not provided by

the hardware
• Next logical step:

– Use instruction set not provided by the computer
– Pseudo-Code interpreter (a primitive, interpreted

programming language)

 3

13

“Appendix D”

• Why not simplify programming by providing
an entire new instruction code that was
simpler to use than the machine’s own.

• Wilkes, Wheeler and Gill (1951) describe a
pseudo-code and an “interpretive subroutine”
for executing it
– Buried in the now famous Appendix D of The

Preparation of Programs for an Electronic Digital
Computer

– They must have not realized the significance of
their work…

14

A Virtual Computer

• Pseudo-code interpreters implement
– A virtual computer
– New instruction set
– New data structures

• Virtual computer:
– Higher level than actual hardware

• Provides facilities more suitable to applications
• Abstracts away hardware details

15

Principles of Programming

• The Automation Principle
– Automate mechanical, tedious, or error

prone activities.
• The Regularity Principle

– Regular rules, without exceptions, are
easier to learn, use, describe, and
implement.

16

Design of a Pseudo-Code

• Remember: it’s 1950!
• Capabilities we want

– Floating point operation support (+,-,*,/,…)
– Comparisons (=,≠,<,≤,>,≥)
– Indexing
– Transfer of control
– Input/output

17

Hardware Assumptions

• The IBM 650 will serve as the hardware
– 1 word: 10 decimal digits + 1 sign
– 2000 byte memory

• 1000 for data
• 1000 for program

http://www-03.ibm.com/ibm/history/exhibits/650/650_intro2.html 18

Principles of Programming

• Impossible error principle
– Making errors impossible to commit is

preferable to detecting them after their
commission.

– E.g.: Cannot modify the program
accidentally, since memory modifying
operations are for “data memory” only

 4

19

Language Design

• 1 word can be enough to specify a 3-
operand instruction
– Operation: sign + 1 digit

• Supports 20 operations
– 3 3-digit operands

• Each accessing memory locations in data area
– Orthogonal design:

• Operations should be more intuitive than
machine code

• Use the sign to get more orthogonality
20

Principles of Programming

• Orthogonality principle
– Independent functions should be controlled

by independent mechanisms.

21

Specifics

• Instruction format:
– op src1 src2 dst
– E.g.: x+yàz : +1 010 150 200

• “Add values at location 010 and 150, and save
it to location 200”

– Orthogonal design: subtract should be ‘-1’

