
3/16/12

1

1

CS 4100
Pascal Highlights

March 16, 2012

Based on slides by Istvan Jonyer
Book by MacLennan

2

Issues with Extensibility
•  Inefficiency

–  New syntax is translated to kernel constructs
–  Inefficiencies are magnified

•  Poor diagnostics
–  Compiler errors are issued at kernel-level, which

may be confusing to programmer
–  Language is hard to read, since people make up

their own syntax
•  Upside

–  Research on minimal requirement for PL’s

3

Move Toward Simplicity
•  Niklaus Wirth suggests changes to

Algol-60
– Non-numeric data types
– Removing baroque features
– Maintain efficiency (compile and run-time)
– Can be taught systematically

•  Implements Algol-W (after changes are
rejected by Algol committee)
– Evolves into Pascal, competed in 1970

4

Pascal - 3rd Generation

•  Developed 1968-1970
– 29 page report

•  Revised 1972
•  International Standard 1982
•  Popular teaching language

5

Pascal’s Syntax

•  Pascal’s syntax is like Algol’s (p. 171)
•  Major changes

– program … end.
– procedure <declarations> begin

<statements> end;
– var, const, type
–  for-loop: simplified
– case-statement

6

var, const, type
•  const

–  Constant parameter declaration
 const Max = 900;

•  type
–  Type declarations introduced by “type”
 type index = 1 .. Max;!

•  var
–  Variables declared after “var”

! var!
! ! i: index;
 sum, ave, val: real;!

3/16/12

2

7

Data Structures

•  Primitives are like Algol’s
–  real, integer, Boolean, char
– Char holds one character

•  Strings are arrays of chars

8

Enumeration Types: Issues
•  Problem:

–  How to manipulate non-numeric data?
–  Mon, Tue, Wed,… Male/Female,

•  Using number is very confusing (error prone)
–  today := 5; // Friday
–  tomorrow := today + 1; // next day
–  Issues: Sunday: 0 or 1? Start week with Monday?

•  Assign numbers to meaningful variables
–  Mon = 1, Tue = 2, … male = 0, female = 1, …

•  Security Issue: compiler allows meaningless
operations

•  Year : = (month + male)/DayOfWeek

9

Enumeration Types
•  Pascal introduces enumeration types

type
 month = (Jan, Feb, Mar, Apr, May, …);
 sex = (male, female);
var
 thisMonth : month;
 gender : sex;
begin
 thisMonth := Feb;
 gender := female;

•  Supported operations for all enumerated types
 :=, succ, pred, =, <>, <, =, >, <=, >=

10

Enumeration Types
•  Advantages

– High level
•  Lets programmers write what they mean

– Secure
•  Type checking is performed
•  No meaningless operations

– Efficient
•  Allows optimization of storage
•  E.g.: Days of week can be stored in 3 bits

11

Subrange Types
•  Improve security by allowing variable to take

on values meaningful for their use only
var DayOfMonth: 1 .. 31;
type Weekday = Mon .. Fri;
–  Checking of valid values are checked as part of

type checking
–  Many programming errors come down to subrange

violations (array out of bounds)
–  Efficient: Allows compact storage of variable
–  Subranges of discrete types are allowed

•  integer, enumerated, char
12

Set Types
•  Pascal provides facilities for sets

set of <ordinal type>
–  Ordinal type: enumeration, char, Boolean,

subrange
–  Not integer or real

var S, T: set of 1..10;
–  S, T can hold a set of numbers between 1 and 10

•  vs a single number between 1 and 10:

 var S, T: 1..10;

3/16/12

3

13

Efficiency of Sets
•  Set types are restricted to be ordinal to

be efficient
var S, T: set of 1..10;
– S, T take only 10 bits to represent: 1 bit for

each number
•  Bit = 0 means number is not is set
•  Bit = 1 means number is in set

– S := [1,2,3,5,7];
1 2 3 4 5 6 7 8 9 10

S = 1 1 1 0 1 0 1 0 0 0
14

Set Operations
•  Initialization/Assignment

[]
T := [1..6];

•  Membership
in
if 4 in T then …

•  Union, intersection, difference
+, *, -
S * T, S + T, …

•  Comparisons
–  Subset, equality, non-equality
–  <=, >=, =, <>
–  Proper subset (<) is not provided

15

Efficiency of Sets
•  Sets are implemented using bit masks

– Therefore, operations on sets can be
implemented using logical operations

–  Intersection: logical and
– Union: logical or
– Difference: logical exclusive or

•  Logical operations are the fastest a
computer can do

•  Memory efficiency: 1 bit per element
16

Sets

•  Considered an example of elegance
– High-level
– Readable
– Efficient
– Secure

17

Elegance Principle

•  Confine your attention to things that
look good because they are good

18

Array Types
•  Arrays are more general than Algol’s

– Base type of arrays can be non-primitives
–  Index types are introduced
– Subscripts can be other than integers

•  Char, subrange, enumerated types
var A: array [1..100] of real;
var Occur: array [char] of integer;
var HoursWorked: array [Mon..Fri] of 0..24;

for day := Mon to Fri do
 TotalHours := TotalHours + HoursWorked[day];

3/16/12

4

19

Dimensions
•  Only single-dimension arrays are

allowed!!!
•  However:

– Base type of array can be another array!!!
var M: array [1..20] of array [1..100] of real;

– Dereferencing: M[3][5]
•  Syntactic sugar:
 var M: array [1..20, 1..100] of real;

 M[3, 5]
(Doesn’t affect functionality, sweeter for human use.)

