
4/20/12

1

1

CS 4100
LISP

April 20, 2012
Based on slides by Istvan Jonyer

Book by MacLennan
Chapters 9, 10, 11

2

Atoms

•  LISP was written for AI
–  to represent complex relationships among objects
–  Objects can have many properties in real life;

Atoms allow for modeling this
•  Each atom comes with its own property list,

and some built-in properties
–  pname (print name); mandatory
–  apval (applied value); to store data

•  If atom is bound to a value
–  expr (expression); to store program

•  If atom is bound to a program

3

Adding Properties to Atoms

•  Other, arbitrary properties may also be added to
an atom using putprop (not in our clisp: setf)

 (putprop atom propValue propName)!
!(putprop ‘France ‘Paris ‘capital)!

–  Paris, in this case, is also an atom
•  Find out the value of a property using get

>(get ‘France ‘capital)!
Paris!
>(get ‘France ‘pname)!
“France”!

4

Special Property: apval

•  Assigning a value to an atom
(set ‘Europe ‘(England France …))!
–  is the same as
(putprop ‘Europe ‘(England France …)
‘apval)!

‘Applied value’ points to the list the atom is
bound to

5

List Representation
•  Lists are represented as linked lists

 (to be or not to be)

 ((to 2) (be 2))
to be or not to be nil

to 2

/

be 2

/ /

6

Origins of car and cdr
•  First LISP was designed for the IBM 704

– 1 word had 2 fields
•  Address field
•  Decrement field

– car: “Content of Address part of Register”
– cdr: “Content of Decrement part of Register”

to be or

…

car cdr

4/20/12

2

7

Implementation of cons
•  car and cdr simply return the respective

parts of the register
•  cons has the job of constructing a new

register using two pointers
– Allocate new memory location
– Fill in left and right parts of new location

 (cons ‘to ‘(be or not to be))

to be or not to be nil
8

Sublists Can Be Shared
(set ‘L ‘(or not to be))!
(set ‘M ‘(to be))!
(set ‘N (cons (cadr M) L))!
(set ‘O (cons (car M) N))!

to

/

be or not to

/

be

M L

N

O

9

[10]> (set 'L '(or not to be))!
(OR NOT TO BE)!
[11]> (set 'M '(to be))!
(TO BE)!
[12]> (set 'N (cons (cadr M) L))!
(BE OR NOT TO BE)!
[13]> (set 'O (cons (car M) N))!
(TO BE OR NOT TO BE)!

10

List Structures Can Be Modified
•  Functions discussed so far do not

modify lists
•  Modifying lists is possible via

–  replaca (replace address part)
–  replacd (replace decrement part)

•  It is possible that more than one symbol
points to a list
– which can be modified using replaca and

replacd
– This can cause unexpected problems (like

equivalence in Fortran)

11

Iteration by Recursion

•  Iteration is done by recursion
•  Iteration is mostly needed to perform an

operation on every element of a list
–  This can be done using combination of

•  testing for end of list,
•  operating on first element, and
•  recursing on rest of the list
(defun plus-red (a)!
!(if (null a) nil!
! (plus (car a) (plus-red (cdr a)))))!

–  Notice: No array bounds are needed! Function is
very general

12

Iteration = Recursion

•  Theoretically, recursion and iteration have the
same power, and are equivalent

•  One can be translated to the other (although
may not be practical)
–  Recursion à iteration

•  Use iteration and keep track of auxiliary information in an
explicit stack

–  Iteration à recursion
•  Need to pass control information (variables)

4/20/12

3

13

Storage Reclamation
•  What happens to cons’d pointers that are no

longer in use?
•  Explicit reclamation is the obvious / traditional

way
–  C: malloc, calloc, realloc, free
–  C++: new, delete
–  Pascal: new, dispose

•  Issues
–  Complicates programming

•  Requires the programmer to keep track of pointers

–  Violates security of the environment
•  Memory freed, but still referenced (dangling pointers) 14

Automatic Storage Reclamation
•  It would be nice for the system to

automatically ‘reclaim’ storage no longer
used

•  System can keep track of number of
references to storage
–  When references decrease to 0, storage is

returned to ‘free-list’
•  Advantage:

–  Storage reclaimed immediately as last reference is
destroyed

•  Disadvantage:
–  Cyclic structures (points to itself) cannot be

reclaimed

15

Garbage Collection
•  A different approach is garbage collection

–  Do not keep track of references to location
–  When last reference is destroyed, we still do not do

anything, and leave the memory as garbage
(unused, non-reusable storage, littering the
memory)

–  Collect garbage if system runs out of storage
•  Mark all areas unused
•  Then examine all visible pointers and mark storage they

point to as ‘used’
•  Leftover is garbage, and can be put on free-list

–  This is called the mark-and-sweep method
16

Garbage Collection

•  Advantages
–  Fast until runs out of memory
–  No additional memory is needed for tracking

references
•  Disadvantages

–  Garbage collection itself can be slow
•  If memory is large, and have many references
•  Must halt entire system, since all dynamic memory must

be marked as unused first

•  Java uses this approach

