
4/20/12

1

1

CS 4100
LISP

April 18, 2012
Based on slides by Istvan Jonyer

Book by MacLennan
Chapters 9, 10, 11

2

LISP Is Interpreted

•  Most LISP systems provide interactive
interpreters
– One can enter commands into the

interpreter, and the system will respond
> (plus 2 3)!
5!
> (eq (plus 2 3) (difference 9 4))!
t!! ! !(means ‘true’)

3

Pure vs Pseudo-Functions

•  Pure functions
–  plus, eq, …
–  Only effect is the computation of a value

•  Pseudo-functions
–  Has side-effect; more like a procedure
–  set

•  (set ‘text ‘(to be or not to be))
•  Side effect:

–  Sets the value of text to (to be or not to be)
•  Return value:

–  (to be or not to be)

4

Data Structures

•  Primitives
–  Numbers

•  Operations: plus, minus, times, eq, etc.
–  Non-numeric atoms

•  Strings of characters used as symbols
–  Much like enumerated types in Pascal
–  Not used as strings

•  Operations: eq
•  Special atoms

–  t: true
–  nil: false; non-existent atom; empty list

5

Data Constructor
•  The data constructor is the list
•  Lists can have 0, 1 or more elements

– Observes the Zero-One-Infinity principle
– Empty list: ‘() or nil

•  All lists are non-atomic (except empty
list)
> (atom ‘()) !or (atom nil) or (atom 5)!
t!
> (atom ‘(to be)) or (atom ‘(()))!
nil!

6

Car and Cdr
•  Accessing parts of a list

–  Car
•  Accesses first element of the list
>(car ‘(to be or not to be))!
to!
>(car ‘((to be) or (not to be)))!
(to be)!
•  Returns an element

–  cdr
•  Accesses rest of the list (list without first element)
>(cdr ‘(to be or not to be))!
(be or not to be)!
•  Returns a list

4/20/12

2

7

Combining car and cdr
•  How do we select the second element?

>(car (cdr ‘(to be or not to be)))!
be!

•  Third?
>(car (cdr (cdr ‘(to be or not to be))))!
or!

•  How about this?
(set ‘DS ‘((Don Smith) 45 30000 (Aug 4 80)))!

–  Select day of hire
>(car (cdr (car (cdr (cdr (cdr DS))))))!
4!

•  This can be simplified:
>(cadadddr DS)!
4!

8

Defining Functions
(set ‘DS ‘((Don Smith) 45 30000 (Aug 4 80)))

•  Define functions to replace cadadddr
(defun hire-date (r) (cadddr r))!
(defun day (d) (cadr d))!
!
–  Now we can select the day of the hire date as
(day (hire-date DS))!

•  This is more readable and more maintainable

9

Property Lists

•  List like this are hard to maintain and read:
((Don Smith) 45 30000 (Aug 4 80))
–  We don’t know what elements mean
–  Hard to change the structure of the list

•  A better way is to use property lists:
(name (Don Smith) age 45 salary 30000 hire-date (Aug 4 80))
–  This way we can search for property name we

want (age) and return value (45)
–  Order of properties becomes immaterial
–  General form (p1 v1 p2 v2 … pn vn)

10

Accessing Property Lists
(name (Don Smith) age 45 salary 30000 hire-date (Aug 4 80))

•  How do we find the property?
–  If property we want is the first one, return second

element of list
–  else skip first 2 elements, and start over

•  In LISP (get property p of list l)
(defun getprop (p l)

 (if (eq (car l) p)
 (cadr l)
 (getprop p (cddr l))))

11

Association Lists
•  What if the property does not have a

value? (e.g. “retired”)
•  What is the property has more than a

single value?
– Of course, these can be solved using the

property list, if we understand the
properties of each property…

– A better, more foolproof way is to use
association-lists:

((name (Don Smith))
 (age 45)
 (salary 30000)
 (hire-date (Aug 4 80)))

12

Constructing Lists

•  Need inverse of car and cdr
–  car: get first of list
–  cdr: get rest of list

•  Inverse:
–  cons: append first of list to rest of list

>(cons ‘to ‘(be or not to be))!
(to be or not to be)!
>(cons ‘(to be) ‘(or not to be))!
((to be) or not to be)!

–  Returns a list

4/20/12

3

13

Appending Lists
>(cons ‘(to be) ‘(or not to be))!
((to be) or not to be)!

•  But we’d like (to be or not to be)
>(append ‘(to be) ‘(or not to be))!
(to be or not to be)!

•  How would we implement append ?
–  We need to extract and cons the last element of

the first list successively
(defun append (L M) !
!(if (null L)!
!! M!
!! (cons (car L) (append (cdr L) M))))!

14

[3]> (defun mappend (L M) (if (null L) M (cons
(car L) (mappend (cdr L) M))))!

MAPPEND!
!
[4]> (trace mappend)!
;; Tracing function MAPPEND.!
(MAPPEND)!
!
[5]> (mappend '(to be) '(or not to be))!
1. Trace: (MAPPEND '(TO BE) '(OR NOT TO BE))!
2. Trace: (MAPPEND '(BE) '(OR NOT TO BE))!
3. Trace: (MAPPEND 'NIL '(OR NOT TO BE))!
3. Trace: MAPPEND ==> (OR NOT TO BE)!
2. Trace: MAPPEND ==> (BE OR NOT TO BE)!
1. Trace: MAPPEND ==> (TO BE OR NOT TO BE)!
(TO BE OR NOT TO BE)!
!

