CS 4100
LISP

April 16, 2012
Based on slides by Istvan Jonyer
Book by MacLennan
Chapters 9, 10, 11

4/17/12

Fifth Generation

Skip 4th generation: ADA
— Data abstraction

— Concurrent programming

» Paradigms

— Functional: ML, Lisp

— Logic: Prolog

— Object Oriented: C++, Java

Chapter 9:
List Processing: LISP

+ History of LISP
— McCarthy at MIT was looking to adapt high-level
languages (Fortran) to Al - 1956

— Al needs to represent relationships among data
entities

« Linked lists and other linked structures are common
— Solution: Develop list processing library for Fortran
— Other advances were also made

« IF function: X = IF(N .EQ. 0, ICAR(Y), ICDR(Y))

« List processing and conditional statement combined

What do we need?

* Recursive list processing functions
+ Conditional expression

* First implementation
—1BM 704
— Demo in 1960

« Common Lisp standardized

Example LISP Program

(defun make-table (text table)
(1f (null text)
table
(make-table (cdr text)

(update-entry table (car
text))

)

)
+ Called S-expressions (Symbolic) 5

Central Idea: Function
Application

» There are 2 types of languages
— Imperative
« Like Fortran, Algol, Pascal, C, etc.

* Routing execution from one assignment statement to
another

— Applicative
. LISP

« Applying a function to arguments
- (faja,...a,)
*» No need for control structures

Prefix Notation

» Prefix notation is used in LISP
— Sometimes called Polish notation (Jan Lukasiewicz)
» Operator comes before arguments
* (plus 12) same as 1 + 2 in infix
* (plus547689)

» Functions cannot be mixed because of the list
structure

* (Asin Algol: 1 +2-3)
* LISP is fully parenthesized
* No need for precedence rules

4/17/12

cond Function

(cond
((null x) 0)
((eq x y) (f x))
(t (g y)))

» Equivalent to
if null(x) then 0

elsif x y then f (x)
else g(y)

Function Definition

(defun make-table (text table)

(if (null text)

table
(make-table (cdr text)
(update-entry table (car text))

)

)
)

* Function definition is achieved by calling a
function(!) called defun, with arguments

— Name (make-table)
— Parameters (text table)
— Body (if ...)

Everything Is a List

* Why is everything a list in LISP?
— Simplicity Principle
» A language should be as simple as possible.
There should be a minimum number of
concepts, with simple rules for their
combination.
« If there is only one basic mechanism in the

language, the language is easier to learn,
understand, and implement.

The List is the Data Structure

Lists contain symbolic data

(set ‘text ‘(to be or not to be))

— Lists like (to be or not to be) can be manipulated
like numbers in other languages (compared,
concatenated, split, passed to functions,...)

Atoms
— The list (to be or not to be) has 4 atoms
« to, be, or, not
— Functions are provided for manipulation of atoms
* Lists of lists

((to be or not to be) (that is the question))

"

Programs Are Lists

« Programs are also represented as lists
— (make-table text nil)
« Can be a list
— with atoms make-table, text, and nil
» Can be a function
— ‘make-table’ with 2 arguments
* How do we tell apart the program from a data
list?
— Quoted lists are not interpreted:
e (set ‘text ‘(to be or not to be))
— Unquoted ones are interpreted

e (set ‘text (to be or not to be))
(function: to)

Implications?

* If programs are lists
— and data is also list

— then we can generate a list that can be interpreted
as a program

* In other words

— We can write a program to write and execute
another program

— Useful in artificial intelligence
» Reductive aspects?

4/17/12

» Most LISP systems provide interactive

LISP Is Interpreted

interpreters
— One can enter commands into the

interpreter, and the system will respond
(plus 2 3)

(eq (plus 2 3) (difference 9 4))
(means ‘true’)

