FORTRAN, Part 3

CS4100
February 20, 2012

Reminders

* Assn 2 due Monday, Feb 20th
— Upload to submission system

DESIGN: Data Structures

 First data structures

— Suggested by mathematics
* Primitives
* Arrays

Primitives

* Primitives are scalars only
— Integers
— Floating point numbers
— Double-precision floating point
— Complex numbers
— No text (string) processing

Representations
* Word-oriented

— Most commonly 32 bits
* Integer

— Represented on 31 bits + 1 sign bit
* Floating point

— Using scientific notation: characteristic +
mantissa

|sm‘sc‘c7‘m‘c,,‘m_”‘m ‘m,,l

Arithmetic Operators

+ 2+31="7

— 2isinteger, 3.1 is floating point

* How do we handle this situation?

— Explicit type-casting: FLOAT(2) + 3.1
« Type-casting is also called “coercion”
— FORTRAN: Operators are overloaded
— Automatic type coercion
« Always coerce to encompassing set
— Integer + Float - float addition
— Float * Double - double multiplication
— Integer — Complex - complex subtraction
« Types dominate their subsets

Example

« X™(1/3)= 2
1/3=0
1/3.0 = 0.33333

Hollerith Constants

+ Early form of character string in FORTRAN

— BHCARMEL is a six character string ‘CARMEL’ (H is for
Hollerith)
— Second-class citizens
« No operations allowed

« Can be read into an integer variable, which cannot (should not)
be altered

* Problems

— Integer representing a Hollerith constant may be altered,
which makes no sense

* Weak typing
— No type checking is performed

Constructor: Array

» Constructor

— Method to build complex data structures
from primitive ones

* FORTRAN only has array constructors
DIMENSION DTA, COORD(10,10)
— Initialization is not required
— Maximum 3 dimensions

Representation

« Simple, intuitive representation
« Column-major order

— Most languages do row-major order Element | Address
— Addressing equation: A(1,1) A
+ afAQ)} = afA()} + 1=afA)} - 1+2 AQ,D) A+1
o afA®)} =af{A()} -1 +i
. (x(A(i.J)/:(x(A(l,l)}*(jfl)m+ivfl A ATmol
+ FORTRAN uses 1-based g

— One addressable slot of each elt Al2) |A+m

Am2) |[A+2m-1

Amn) [A+nm-1

Optimizations

+ Arrays are mostly associated with loops
— Most programmers initialize controlled variable to 1, and
reference array A(i)
— Optimization:
« Initialize controlled variable to address of array element
« Therefore, we’ll increment address itself
« Dereference controlled variable to get array element

Subscripts

+ Subscripts can be expressions
— A(i+m*c)
— This defeats above optimization
— Therefore, subscripts are limited to
« cand ¢’ are integers, v is an integer variable
*C
.y

v+c, v-¢
.oty
o cHvic’, ctv-c’
— A(J - 1) ok; A(1+J) not ok
+ Optimizations like this sold FORTRAN

DESIGN: Name Structures

* What do name structures structure?
— Names, of course!

+ Primitives bind names to objects
—INTEGER |, J, K

* Allocate integers 1, J, and K, and bind the
names to memory locations

* Declare: name, type, storage

Declarations

» Declarations are non-executable
statements

* Unlike IF, GOTO, etc., which are
executable statements
« Static allocation

— Allocated once, cannot be deallocated for
reuse

— FORTRAN does not do dynamic allocation

Optional Declaration

+ FORTRAN does not require variables to be declared
— First use will declare a variable
* What's wrong with this?
— COUNT = COUMT + 1
— What if first use is not assignment?
+ Convention:
— Variables starting with letters i, j, k, I, m, n are integers
— Others are floating point

— Bad practice: Encourages funny names (KOUNT, ISUM,
XLENGTH...)

Now: Semantics (meaning)

“They went to the bank of the Rio
Grande.”

What does this mean?
How do we know?
CONTEXT, CONTEXT, CONTEXT

Programming Languages

* X =COUNT(I)
* What does this mean

— X integer or real

— COUNT array or function
* Again Context

— Set of variables visible when statement is
seen

* Context is called ENVIRONMENT

SCOPE

» Scope of a binding of a name
— Region of program where binding is visible
* In FORTRAN
— Subprogram names GLOBAL
* Can be called from anywhere
— Variable names LOCAL
* To subprogram where declared

Contour Diagram

Global scope
R Main program
s | X
R(2)
S(X)
R s
N N
X Zt‘
Y S(X)

Once we have subprograms...

* We need to find a way to share data
— Parameters
* Pass by reference
* Pass by value-result
— Caller copies value of actual to formal variable

— On return, caller copies result value to actual
» Omit for constants or expressions as actuals

Once we have subprograms...

» Share Data With Just Parameters?
— Cumbersome, and hard to maintain
— Produces long list of parameters

— If data structure changes, there are many changes
to be made

— Violates information hiding

Sharing Data

* FORTRAN's solution:

+ COMMON blocks allow more flexibility
— Allows sharing data between subprograms
— Scope rules necessitation this

» Consider a symbol table

SUBROUTINE ARRAY2 (N, L, C, D1, D2)
COMMON /SYMTAB/ NAMES (100), LOC(100), TYPE(100)

SUBROUTINE VAR (N, L, C)
COMMON /SYMTAB/ NAMES (100), LOC(100), TYPE(100)

COMMON Problems

» Tedious to write
Unreadable
Virtually impossible to change AND

COMMON permits aliasing, which is
dangerous

— If COMMON specifications don’t agree,
misuse is possible

Aliasing

* The ability to have more than one name
for the same memory location

* Very flexible!
COMMON /B/ M, A(100)

COMMON /B/ X, K, C(50), D(50)

EQUIVALENCE

+ Since dynamic memory allocation is not
supported, and memory is scarce,
FORTRAN has EQUIVALENCE

DIMENSION INDATA(10000), RESULT (8000)
EQUIVALENCE INDATA (1), RESULT (8)

+ Allows a way to explicitly alias two
arrays to the same memory

EQUIVALENCE

» This is only to be used when usage of
INDATA and RESULT do not overlap

» Allows access to different data types (float as
if it was integer, etc.)

» Has same dangers as COMMON

DESIGN: Syntactic Structures

* Languages are defined by lexics and syntax
— Lexics
Way to combine characters to form words or symbols

E.g. Identifier must begin with a letter, followed by no
more than 5 letters or digits

— Syntax
Way to combine symbols into meaningful instructions
* Syntactic analysis:
Lexical analyzer (scanner)
Syntactic analyzer (parser)

Fixed Format Lexics

« Still using punch-cards!
» Particular columns had particular meanings
» Statements (columns 7-72) were free format

Columns Purpose

1-5 Statement number
6 Continuation

7-72 Statement

73-90 Sequence number

Blanks Ignored

* FORTRAN ignored spaces (not just white
spaces)
» Thisisveryunfortunate!

DIMENSION INDATA(10000), RESULT (8000)
DIMENSIONINDATA((10000, RESULT (8000)
DIMENSIONINDATA (10000) , RESULT (8000)

* Lexing and parsing such a language is very
difficult

Blanks Ignored

* In combination with other features, it
promoted mistakes

DO 20 I = 1. 100
DO 20 I =1, 100
DO20I = 1.100

» Variable DO20I is unlikely, but . and , are
next to each other on the keyboard...

No Reserved Words

« FORTRAN allows variable named IF

DIMENSION IF(100)

* How do you read this?
IF (I - 1) =12 3
IF (I - 1) 1, 2, 3

» The compiler does not know what
IF (I - 1) will be
— Needs to see , or = to decide

Algebraic Notation

* One of the main goals was to facilitate
scientific computing

— Algebraic notation had to look like math

— (-B + SQRT(B**2 — 4*AA*C))/(2*A)

— Very good, compared to our pseudo-code
Problems

— How do you parse and execute such a
statement?

Operators Need Precedence

* b2?-4ac==(b?) - (4ac)
+ ab?==a(b?)
* Precedence rules
1. Exponentiation
2. Multiplication and division
3. Addition and subtraction

+ Operations on the same level are associated to the
left (read left to right)

* How about unary operators (-)?

Some Highlights

* Integer type is overworked
— Integer
— Character strings
— Addresses
* Weak typing
+ Combine the two and we have a security loophole
— Meaningless operations can be performed without warning

Some Highlights

* Arrays
— Only data structure
— Data constructor
— Static
— Limited to three dimensions
— Restrictions on index expressions
— Optimized
— Column major order for 2-dimensional
— Not required to be initialized

