
1

FORTRAN, Part 3

CS4100
February 20, 2012

Reminders

• Assn 2 due Monday, Feb 20th
– Upload to submission system

DESIGN: Data Structures

• First data structures
– Suggested by mathematics

• Primitives
• Arrays

Primitives

• Primitives are scalars only
– Integers
– Floating point numbers
– Double-precision floating point
– Complex numbers
– No text (string) processing

Representations
• Word-oriented

– Most commonly 32 bits
• Integer

– Represented on 31 bits + 1 sign bit
• Floating point

– Using scientific notation: characteristic +
mantissa

m0…m21c0…c7scsm

Arithmetic Operators
• 2 + 3.1 = ?

– 2 is integer, 3.1 is floating point
• How do we handle this situation?

– Explicit type-casting: FLOAT(2) + 3.1
• Type-casting is also called “coercion”

– FORTRAN: Operators are overloaded
– Automatic type coercion

• Always coerce to encompassing set
– Integer + Float à float addition
– Float * Double à double multiplication
– Integer – Complex à complex subtraction

• Types dominate their subsets

2

Example

• X**(1/3) = ?
1/3 = 0
1/3.0 = 0.33333

Hollerith Constants
• Early form of character string in FORTRAN

– 6HCARMEL is a six character string ‘CARMEL’ (H is for
Hollerith)

– Second-class citizens
• No operations allowed
• Can be read into an integer variable, which cannot (should not)

be altered

• Problems
– Integer representing a Hollerith constant may be altered,

which makes no sense
• Weak typing

– No type checking is performed

Constructor: Array

• Constructor
– Method to build complex data structures

from primitive ones
• FORTRAN only has array constructors

DIMENSION DTA, COORD(10,10)

– Initialization is not required
– Maximum 3 dimensions

Representation
• Simple, intuitive representation
• Column-major order

– Most languages do row-major order
– Addressing equation:

• α{A(2)} = α{A(1)} + 1 = α{A(1)} – 1 + 2
• α{A(i)} = α{A(1)} – 1 + i
• α{A(i,j)} = α{A(1,1)} + (j – 1)m + i – 1
• FORTRAN uses 1-based addressing

– One addressable slot of each elt

AddressElement

A + nm - 1A(m,n)
…

A + 2m - 1A(m,2)
…

A + mA(1,2)
A + m - 1A(m,1)

…
A + 1A(2,1)
AA(1,1)

Optimizations

• Arrays are mostly associated with loops
– Most programmers initialize controlled variable to 1, and

reference array A(i)
– Optimization:

• Initialize controlled variable to address of array element
• Therefore, we’ll increment address itself
• Dereference controlled variable to get array element

Subscripts
• Subscripts can be expressions

– A(i+m*c)
– This defeats above optimization
– Therefore, subscripts are limited to

• c and c’ are integers, v is an integer variable
• c
• v
• v+c, v-c
• c*v
• c*v+c’, c*v-c’

– A(J - 1) ok; A(1+J) not ok
• Optimizations like this sold FORTRAN

3

DESIGN: Name Structures

• What do name structures structure?
– Names, of course!

• Primitives bind names to objects
– INTEGER I, J, K

• Allocate integers I, J, and K, and bind the
names to memory locations

• Declare: name, type, storage

Declarations

• Declarations are non-executable
statements

• Unlike IF, GOTO, etc., which are
executable statements

• Static allocation
– Allocated once, cannot be deallocated for

reuse
– FORTRAN does not do dynamic allocation

Optional Declaration
• FORTRAN does not require variables to be declared

– First use will declare a variable
• What’s wrong with this?

– COUNT = COUMT + 1
– What if first use is not assignment?

• Convention:
– Variables starting with letters i, j, k, l, m, n are integers
– Others are floating point
– Bad practice: Encourages funny names (KOUNT, ISUM,

XLENGTH…)

Now: Semantics (meaning)

• “They went to the bank of the Rio
Grande.”

• What does this mean?
• How do we know?
• CONTEXT, CONTEXT, CONTEXT

Programming Languages

• X = COUNT(I)
• What does this mean

– X integer or real
– COUNT array or function

• Again Context
– Set of variables visible when statement is

seen
• Context is called ENVIRONMENT

SCOPE

• Scope of a binding of a name
– Region of program where binding is visible

• In FORTRAN
– Subprogram names GLOBAL

• Can be called from anywhere
– Variable names LOCAL

• To subprogram where declared

4

Contour Diagram

S
R

X
Y

N

Y
N

X

Main program

R S

Global scope

R(2)

S(X)

S(X)

Once we have subprograms…

• We need to find a way to share data
– Parameters

• Pass by reference
• Pass by value-result

– Caller copies value of actual to formal variable
– On return, caller copies result value to actual

» Omit for constants or expressions as actuals

Once we have subprograms…
• Share Data With Just Parameters?

– Cumbersome, and hard to maintain
– Produces long list of parameters
– If data structure changes, there are many changes

to be made
– Violates information hiding

Sharing Data
• FORTRAN’s solution:
• COMMON blocks allow more flexibility

– Allows sharing data between subprograms
– Scope rules necessitation this

• Consider a symbol table

SUBROUTINE ARRAY2 (N, L, C, D1, D2)
COMMON /SYMTAB/ NAMES(100), LOC(100), TYPE(100)
...
SUBROUTINE VAR (N, L, C)
COMMON /SYMTAB/ NAMES(100), LOC(100), TYPE(100)

COMMON Problems

• Tedious to write
• Unreadable
• Virtually impossible to change AND
• COMMON permits aliasing, which is

dangerous
– If COMMON specifications don’t agree,

misuse is possible

Aliasing

• The ability to have more than one name
for the same memory location

• Very flexible!

COMMON /B/ M, A(100)

COMMON /B/ X, K, C(50), D(50)

5

EQUIVALENCE
• Since dynamic memory allocation is not

supported, and memory is scarce,
FORTRAN has EQUIVALENCE

DIMENSION INDATA(10000), RESULT(8000)
EQUIVALENCE INDATA(1), RESULT(8)

• Allows a way to explicitly alias two
arrays to the same memory

EQUIVALENCE

• This is only to be used when usage of
INDATA and RESULT do not overlap

• Allows access to different data types (float as
if it was integer, etc.)

• Has same dangers as COMMON

DESIGN: Syntactic Structures

• Languages are defined by lexics and syntax
– Lexics

• Way to combine characters to form words or symbols
• E.g. Identifier must begin with a letter, followed by no

more than 5 letters or digits
– Syntax

• Way to combine symbols into meaningful instructions

• Syntactic analysis:
Lexical analyzer (scanner)
Syntactic analyzer (parser)

Fixed Format Lexics
• Still using punch-cards!
• Particular columns had particular meanings
• Statements (columns 7-72) were free format

Sequence number73-90

Statement7-72

Continuation6

Statement number1-5

PurposeColumns

Blanks Ignored

• FORTRAN ignored spaces (not just white
spaces)

• Thisisveryunfortunate!

DIMENSION INDATA(10000), RESULT(8000)
D I M E N S I O N I N D A T A (1 0 0 0 0), R E S U L T (8000)
DIMENSIONINDATA(10000),RESULT(8000)

• Lexing and parsing such a language is very
difficult

Blanks Ignored

• In combination with other features, it
promoted mistakes

DO 20 I = 1. 100
DO 20 I = 1, 100
DO20I = 1.100

• Variable DO20I is unlikely, but . and , are
next to each other on the keyboard…

6

No Reserved Words

• FORTRAN allows variable named IF
DIMENSION IF(100)

• How do you read this?
IF (I - 1) = 1 2 3
IF (I - 1) 1, 2, 3

• The compiler does not know what
IF (I - 1) will be
– Needs to see , or = to decide

Algebraic Notation

• One of the main goals was to facilitate
scientific computing
– Algebraic notation had to look like math
– (-B + SQRT(B**2 – 4*AA*C))/(2*A)
– Very good, compared to our pseudo-code

• Problems
– How do you parse and execute such a

statement?

Operators Need Precedence

• b2 – 4ac == (b2) – (4ac)
• ab2 == a(b2)
• Precedence rules

1. Exponentiation
2. Multiplication and division
3. Addition and subtraction

• Operations on the same level are associated to the
left (read left to right)

• How about unary operators (-)?

Some Highlights
• Integer type is overworked

– Integer
– Character strings
– Addresses

• Weak typing
• Combine the two and we have a security loophole

– Meaningless operations can be performed without warning

Some Highlights

• Arrays
– Only data structure
– Data constructor
– Static
– Limited to three dimensions
– Restrictions on index expressions
– Optimized
– Column major order for 2-dimensional
– Not required to be initialized

