FORTRAN, Part 1

CS4100
February13, 2012

Reminders

+ Project proposals due Friday, Feb 17th
— Please upload to submission system

» Assn 2 due Monday, Feb 20th
— Upload to submission system

Highlights of Psuedo-Code

Virtual computer

— More regularity

— Higher level

Decreased chance of errors

— Automate tedious and error-prone tasks
Increased security

— Error checking
Simplify debugging

— trace

Now: FORTRAN
The First Generation

+ Early 1950s

— Simple assemblers and libraries of
subroutines were tools of the day

— Automatic programming was considered
unfeasible

— Good coders liked being masters of the
trade

Laning and Zierler at MIT in 1952
— Algebraic language

Backus at IBM

Visionary at IBM

Recognized need for faster coding practice
Need “language” that allows decreasing costs to
linear, in size of the program

Speedcoding for IBM 701

— Language based on mathematical notation

— Interpreter to simulate floating point arithmetic

Backus at IBM

* Goals

— Get floating point operations into hardware: IBM 704
« Exposes deficiencies in pseudo-code

— Decrease programming costs
« Programmers to write in conventional mathematical notation
« Still generate efficient code

IBM authorizes project

— Backus begins outlining FORTRAN
« IBM Mathematical FORmula TRANslating System

— Has few assistants

— Project is overlooked (greeted with indifference and
skepticism according to Dijkstra)

Meanwhile

Grace Hopper organizes Symposia via Office of Naval Research
(ONR)

Backus meets Laning and Zierler

Later (1978) Backus says:

— “As far as we were aware we simply made up the language as we
went along. We did not regard language design as a difficult
problem, merely as a simple prelude to the real problem: designing
a compiler which could produce efficient programs.”

FORTRAN compiler works!

FORTRAN timeline

* 1954: Project approved
+ 1957: FORTRAN
— First version released
* 1958: FORTRAN Il and Il
— Still many dependencies on IBM 704
+ 1962: FORTRAN IV
— “ANS FORTRAN” by American National Standards Institute
— Breaks machine dependence
— Few implementations follow the specifications
* We’'ll look at 1966 ANS FORTRAN

FORTRAN

* Goals

— Decrease programming costs (to IBM)
— Efficiency

Sample FORTRAN program

DIMENSION DTA(900)
SUM 0.0
READ 10, N
10 FORMAT(I3)
DO201=1,N
READ 30, DTA(l)
30 FORMAT(F10.6)
IF (DTA())) 25, 20, 20
25 DTA(l) = -DTA(I)
20 CONTINUE

Structural Organization

* Preliminary specification did not include subprograms
(like in pseudo-code)

* FORTRAN I, however, already included subprograms

Subprogram 1

Subprogram n

Constructs

* Declarative constructs
— (First part in pseudo-code: data
initialization)
— Declare facts about the program, to be
used at compile-time
+ Imperative constructs
— (Second part in pseudo-code: program)
— Commands to be executed during run-time

Declarative Constructs

» Declarations include
— Allocate area of memory of a specified size
— Attach symbolic name to that area of memory
— Initialize the memory
+ FORTRAN example
- DIMENSION DTA (900)
- DATA DTA, SUM / 900*0.0, 0.0

« initializes DTA to 900 zeroes
+« SUM to 0.0

Imperative Constructs

+ Categories:
— Computational
« E.g.: Assignment, Arithmetic operations
+ FORTRAN: AVG = SUM / FLOAT (N)
— Control-flow
« E.g.: comparisons, loop
« FORTRAN:
- Ir-statements
- DO loop
- Goro
— Input/output
« E.g.: read, print
« FORTRAN: Elaborate array of I/O instructions (tapes, drums,
etc.)

Building a FORTRAN Program

* Interpretation unacceptable, since the selling point
is speed
* Need the following stages to build:
1. Compilation
Translate code to relocatable object code
2. Linking
Incorporating libraries (resolving external dependencies)
3. Loading

Program loaded into memory; converted from relocatable to
absolute format

4. Execution
Control is turned over to the processor

Compilation

+ Compilation has 3 phases
— Syntactic analysis
« Classify statements, constructs and extract their parts
— Optimization
+ FORTRAN has considerable optimizations, since that was the
selling point
— Code synthesis

« Put together parts of object code instructions in relocatable
format

DESIGN: Control Structures

» Control structures control flow in the
program

* Most important statement in FORTRAN:
— Assignment Statement

DESIGN: Control Structures

» Machine Dependence (1st generation)
* In FORTRAN, these were based on
native IBM 704 branch instructions
— “Assembly language for IBM 704"

FORTRAN II statement IBM 704 branch operation

GOTO n TRA k (transfer direct)
GOTO n, (nl, n2,..,nm) TRA i (transfer indirect)
GOTO (nl, n2,..,nm), n TRA i,k (transfer indexed)
IF (a) nl, n2, n3 CAS k

IF ACCUMULATOR OVERFLOW nl, n2 TOV k

Arithmetic IF-statement

» Example of machine dependence
- IF (a) nl, n2, n3
— Evaluate a: branch to
n1:if -
* n2:if 0,
* n3:if +
— CAS instruction in IBM 704
* More conventional IF-statement was later
introduced
- IF (X .EQ. A(I)) K=1 -1

Principles of Programming

* The Portability Principle
— Avoid features or facilities that are
dependent on a particular computer or a
small class of computers.

GOTO

* Workhorse of control flow in FORTRAN

+ 2-way branch:
IF (condition) GOTO 100
case for false
GOTO 200
100 case for true
200

+ Equivalent to if-then-else in newer languages

Reversing TRUE and FALSE

» To get if-then-else —style if:
IF (.NOT. (condition)) GOTO 100
case for true

GOTO 200
100 case for false
200

n-way Branching
with Computed GOTO

GOTO (L;, L,, Ly, L
10 case 1
GOTO 100
20 case 2
GOTO 100
30 case 3
GOTO 100
40 case 4
GOTO 100
100
« Transfer control to label L, if | contains k
« Jump Table

n-way Branching
with Computed GOTO

GOTO (10, 20, 30, 40), I

10 case 1

GOTO 100
20 case 2

GOTO 100
30 case 3

GOTO 100
40 case 4

GOTO 100
100

* IF and GOTO are selection statements

Loops

* Loops are implemented using combinations
of IF and GOTOs
» Trailing-decision loop:
100 ..body of loop..
IF (loop not done) GOTO 100
* Leading-decision loop:
100 IF (loop done) GOTO 200
..body of loop..
GOTO 100
200 ..

* Readable?

But wait, there’s more!

* Mid-decision loop:
100 ..first half of loop..
IF (loop done) GOTO 200
..second half of loop..
GOTO 100
200 ..

Hmmm...

 Very difficult to know what control
structure is intended

* Spaghetti code
» Very powerful
* Must be a principle in here somewhere

Principles of Programming

* The Structure Principle (Dijkstra)

— The static structure of the program should
correspond in a simple way to the dynamic
structure of the corresponding
computations.

* What does this mean?

— Should be able to visualize behavior of
program based on written form

GOTO: A Two-Edged Sword

» Very powerful
— Can be used for good or for evil
 But seriously is GOTO good or bad?

— Good: very flexible, can implement
elaborate control structures

— Bad: hard to know what is intended
— Violates the structure principle

But that’s not all!

* We just saw the Computed GOTO:

GOTO (Ly, Ly, =, L), I
— Jumps to label 1, 2, ...

* Now consider the Assigned GOTO:

GOTO N, (L,, L,, ., L)

— Jumps to ADDRESS in N

— List of labels not necessary

— Must be used with ASSIGN-statement
ASSIGN 20 TO N

— Put address of statement 20 into N

— Not the same as N =20 I!l!

Ex: Computed and Assigned
GOTOs

ASSIGN 20 TO N + N has address of stmt
20, say itis 347

* Look for 347 in jump
GOTO (20, 30, 40, 50), N table - out of range
« Not checked
« Fetch value at 347 and
use as destination for
jump
* Problem???
— Computed should
have been Assigned

Ex: Computed and Assigned
GOTOs

I =23 « | expected to have an
address

GOTO I, (20, 30, 40, 50) * SOTO statementwith

— Probably in area used by
system, i.e. not a stmt
« Problem???
— Assigned should have
been computed

Principles of Programming

« The Syntactic Consistency Principle

— Things that look similar should be similar
and things that look different should be
different.

Syntactic Consistency

+ Best to avoid syntactic forms that can be converted to
other forms by a simple error
— *and*
— Weak Typing (more on this later)
« Integer variables
— Integers
— Addresses of statements
— Character strings
« Maybe a LABEL type?
— Catch errors at compile time

