
3/12/12 

1 

1 

Algol Part 3 

CS4100 
March12, 2012 

 

2 

Structured Programming 
•  Compound statements drastically reduce the number 

of GOTOs required 
–  In Fortran, GOTO was the workhorse for control 
–  Example: if-then-else 

•  GOTO-less programs were easier to read 
–  This led people to experiment with abolishing GOTO 
–  Dijkstra: “Go To Statement Considered Harmful” 

•  Difficulty in reading programs came from conceptual gap 
between static and dynamic structure of program 

•  i.e.: static layout on paper, versus runtime operation 
•  Result: languages still have GOTOs, but we don’t use them 

3 

Principles of Programming 

•  The Structure Principle 
– The static structure of the program should 

correspond in a simple way to the dynamic 
structure of corresponding computations. 

4 

Procedures are Recursive 
•  Recursive definitions are frequent in math and science 

–  Define thing in terms of itself 
–  Example:  

•  Factorial: n! = 
n * (n – 1)!  if n > 0 
1    if n = 0 

•  Algol permits recursive procedures 
integer procedure fac(n); 
 value n; integer n; 
 fac := if n = 0 then 1 else n*fac(n-1); 

–  ‘n = 0’ is called the stopping condition 

5 

Implementing Recursion 

•  What happens to local variable n on 
recursive call? 
–  fac(3) is called, then fac(2), then fac(1), 

then fac(0) 
– Would location holding 3 be overwritten? 

•  Yes, if same activation record was used 
– Solution: 

•  Create new activation record for each 
invocation of fac() 

6 

Parameter Passing   

•  Modes in Algol 
– Pass by value 
– Pass by name 

•  Two modes attempt to distinguish 
between input only and input/output 
parameters 



3/12/12 

2 

7 

Pass by Value 
integer procedure fac(n); 
 value n; integer n; 

•  First part of pass by value-result (in Fortran) 
–  Actual copied into variable corresponding to formal 
–  Secure; local variable will not overwrite actual parameter 
–  Does not allow output parameters (input only) 
–  Inefficient for arrays (or other non-primitive data structures, 

in general) 
•  Copy must be made of entire array in activation record 
•  Copying takes time 

8 

Pass by Name 

•  Based on substitution 
–  Consider 
integer procedure Inc(n); 
 integer n; 
 n := n + 1;  

–  And the call  Inc(i) 
•  We need output parameter that will effect i, not just 

local n 
–  Acts like i is substituted for n 
  i := i + 1 

9 

Copy Rule 

•  Procedure can be replaced by its body 
with actuals substituted for formals 

•  Revised Report 4.7.3 
•  Body of Inc(n) 

– i := i + 1 
– A[k] := A[k] + 1 

•  Not how it is implemented 

10 

Pass by Name is Powerful 
•  Evaluate the following using pass by value, 

reference, and name 
procedure S(el,k); 
 integer el, k; 
 begin 
   k := 2; 
   el := 0; 
 end 
A[1] := A[2] := 1; 
i := 1; 
S(A[i], i) 

•  Value   A[1] = 1, A[2] = 1, i = 1   
•  Reference   A[1] = 0, A[2] = 1, i = 2 
•  Name   A[1] = 1, A[2] = 0, i = 2 

 

11 

“Thunks” 
•  Implementing pass by name 

– Passing the text? 
•  Would need to compile at runtime 

–  not possible 

– Copying compiled code? 
•  Would increase size of code… 

– Solution: “Thunks” 
•  Pass address to compiled code 
•  Address of memory location is returned to 

callee to use as variable 
12 

Pass by Name is Dangerous! 
procedure Swap(x, y); 
 integer x, y; 
 begin integer t; 
   t := x; 

   x := y; 

   y := t; 

 end 

•  What is the effect of  
–  Swap(A[i], i)? 
–  Swap(i, A[i])? 



3/12/12 

3 

13 

•  Swap(r,s), where r=1,s=2!
procedure Swap(x, y); 
 integer x, y; 
 begin integer t; 
   t := r;   t=1 

   r := s;   r=2 
   s := t;   s=1 

  

  end 

14 

•  Swap(A[i], i) where A[i]=27, i=1 
procedure Swap(x, y); 
 integer x, y; 
 begin integer t; 
   t := A[i];  t=27 

   A[i] := i;  A[1]=1 
   i := t;  i=27 

  

  end 

 

15 

•  Swap(i, A[i]), where i=1, A[i]=27 
 procedure Swap(x, y); 

 integer x, y; 
 begin integer t; 
    
   t := i;  t=1 
   i := A[i];  i=27 
   A[i] := t;  A[27]=1 
  
 
 end 

16 

Pass-by-name 

•  It can be shown that there is no way to 
define swap in Algol-60 that works for 
all parameters 

•  Design mistake when a simple 
(common) procedure has such 
surprising properties 

17 

Parameter Passing Modes 
•  Pass by value 

–  Bind to value at time of call 
–  Preserves actual (no output parameters) 
–  Inefficient for arrays 

•  Pass by reference 
–  Bind to address at time of call 
–  Changes actual (can be used for output) 
–  Efficient for all data types 

•  Pass by name 
–  Bind to address of thunk at time of call 
–  Changes actual (can be used for output) 
–  Efficient, but expensive 

18 

Out-of-Block GOTOs 
A: begin array x[1:100]; 
   ... 
  B:  begin array y[1:100];  
    ...  
   goto exit; 
    ... 
   end; 
exit: 
 end 

•  What happens to activation records? 
–  Program continues in different block 



3/12/12 

4 

19 

Even worse… 
begin  
 procedure P(n); 
 value n; integer n; 
   if n = 0 then goto out 
   else P(n-1); 
  P(25); 

out: 
end 

•  Indefinite number of activation records… 

20 

Feature Interaction 
•  Example: 

–  GOTOs are simple 
–  Recursion is simple 
–  Combination is very messy 

•  In theory, each feature must be tested with every 
other one to avoid unintended consequences 

•  100 features:  
–  Every pair: 100x100 = 10,000 combinations 
–  Every three: 1003 = 1,000,000 
–  … 

21 

The for-loop is Very General 
for var := exp step exp2 until exp3 do stat 
for var := exp while exp2 do stat 
•  Expressions can be any arithmetic expression, including 

•  for i := i/2 while i>1 do stat 
–  Lists 

•  for days := 31, 28, 31,30, 31, 30 do stat 
–  Conditional expressions (vs. conditional statements!) 

•  for days := 31,  
  if mod(year, 4) = 0 then 29 else 28, 

       28, 31, 30, 31, 30 do stat 

–  Combinations of above   
•  for i := 3, 7, 
      i/2 while i>1, 
      11 step 1 until 16 
   do stat 

22 

•  <for statement> ::= <for clause> <statement> | 
           <label>: <for statement> 
•  <for clause> ::= for <variable> := <for list> do 
•  <for list> ::= <for list element> |  <for list> , <for list element> 
•  <for list element> ::= <arithmetic expression> |  
        <arithmetic expression> step <arithmetic expression> 
                                                 until <arithmetic expression> | 
        <arithmetic expression> while <Boolean expression> 

•  for q:=1 step s until n do A[q]:=B[q] 
•  for k:=1,V1x2 while V1<N do 

   for j:=I+G,L,1 step 1 until N, C+D  
   do A[k,j]:=B[k,j] 

23 

Baroque Features 

•  Fascination-oriented features of little 
use 
– They did it because they could 
– Getting away from assembly languages as 

far as possible 
•  Baroque takes on pejorative meaning 

24 

Baroque 
•  1  : of, relating to, or having the characteristics of a style of 

artistic expression prevalent especially in the 17th century that is 
marked generally by use of complex forms, bold ornamentation, 
and the juxtaposition of contrasting elements often conveying a 
sense of drama, movement, and tension     

•  2  : characterized by grotesqueness, extravagance, complexity, 
or flamboyance     

•  3  : irregularly shaped —used of gems <a baroque pearl> 
•  baroque. (2009). In Merriam-Webster Online Dictionary. Retrieved April 

28, 2009, from http://www.merriam-webster.com/dictionary/baroque 



3/12/12 

5 

25 

Handling Cases: switch 
begin 

 switch wageStatus = fulltime, parttime, hourly; 
 ... 
 goto wageStatus[i]; 

fulltime:  ...handle fulltime case... 
   goto done;  

parttime:  ...handle parttime case... 
   goto done; 

hourly:   ...handle hourly case... 
   goto done; 

done:  ... 
end; 

•  Elaboration on computed GOTO of Fortran (and IBM 650) 
•  Confusing, since switch, goto, and labels can be anywhere in the 

program 
•  Label list can contain conditionals (if i>0 then M else N) 

26 

Machine Independence 
•  Get away from formats tied to particular computers, 

punch cards -> free format 
•  How should a program be formatted? 

–  Left justify, one statement per line  
–  Like English sentence 
–  Structured (hierarchical) 

•  Obeys structure principle 

•  Most languages followed Algol in free format 

27 

Machine Independence 

•  Representation issues 
– Different hardware 

•  Input devices 
•  Character sets 

– Different conventions 
•  Math vs cs 
•  American vs European 
•  Comma (European) vs point (American) almost 

defeats Algol 

28 

Machine Independence 

•  Theorem: The more trivial the point the 
more vehemently people will fight over it 

•  Which symbols 
– Only those available in all sets 

•  Too limiting 
–  Independent of particular sets 

•  chosen 

29 

Compromise 
•  Three representations 

–  Reference language used in language specifications 
•  E.g. “up arrow” 

–  Publication language used in publications 
•  E.g. sub- and super-scripts 

–  Hardware language to be used by implementers 
•  Use appropriate character set  
•  I/O for the computer system 

30 

Lexical Conventions 
•  Reserved words 

–  Cannot be used as identifiers 
–  Most languages 

•  Key words 
–  Words used by language are marked 

•  E.g. Different font or bold 
•  Hard to type 

–  Algol 

•  Keywords in context 



3/12/12 

6 

31 

Keywords in context 
•  FORTRAN 
•  Words used by language are only keywords in 

context where expected 
–  Hard to catch errors 

•  Legal in PL/I 
IF IF THEN 

THEN = 0; 
ELSE  

ELSE = 0; 

32 

Some Design Considerations 

•  From David Billington, The Tower and 
the Bridge 1993 

•  Techological Activities 
– Values    

•  Efficiency 
•  Economy  
•  Elegance 
 

•  Dimensions 
•  Scientific 
•  Social 
•  Symbolic 

 

33 

Efficiency 

•  Materials used 
•  Scientific Issue 
•  Memory 
•  Time 

– Programmer 
– Compiler 
– Run 

34 

Economy 

•  Cost-benefit 
•  Social Issue 
•  Benefit to programming community 
•  Cost: trade-offs 

– Computer vs programmer time 
–  Increasing cost of residual bugs 
– Program maintenance vs development 

35 

Economy 

•  Social Influences 
– Manufacturer support 
– Prestigious universities teach 
– Approved by influential organizations 
– Standardized 
– Used by “real” programmers 

•  Monetary values are unstable as is 
social climate 

36 

Elegance 
•  Under-engineered 

–  Risk of unanticipated interactions 

•  Over-engineered 
–  Inefficient or uneconomical 

•  Can’t always rely solely on mathematical analysis 
–  Always incomplete 

•  Simplifications 
•  assumptions 



3/12/12 

7 

37 

Elegance 

•  General Principle: Designs that look 
good are good 

•  Function follows form 
– But needs to be deep (not superficial) 

•  Should be a joy to use 
– Comfortable and safe 

38 

Elegance 

•  Aesthetics comes from experience 
•  Design obsessively 

– Criticize 
– Revise 
– Discard 

39 

In Summary, Algol 
•  Never had widespread use 

–  No I/O 
–  Competing directly with FORTRAN 

•  Major milestones 
–  Block-structured 
–  Nested 
–  Recursive 
–  Free-form 
–  BNF - mathematical theory of formal languages 

40 

Algol by reputation 

•  General 
•  Regular 
•  Elegant 
•  Orthogonal 

41 

Second Generation 

•  Elaborations and generalizations of first 
generation 
–  Strong typing of built-in types 
–  Name structures hierarchically nested 
–  Structured control structures 

•  Recursion 
•  Parameter passing 

–  Syntactic structures 
•  Machine independent 
•  Moving away from fixed formats 


