
3/5/12

1

1

Algol Part 2

CS4100
March 5, 2012

2

Contour Diagrams
•  Inner blocks implicitly inherit access to all variable in

immediately surrounding block
•  Names declared in a block are local to the block
•  Names declared in surrounding blocks are nonlocal
•  Names declared in outermost block are global

3

Contour Diagrams

•  See Figure 3.3, page 102
•  Do Exercise 3-1, page 104

4

Dynamic vs Static Scoping

•  Static scoping
–  Procedure is called in the context of its declaration

•  Environment of Definition
–  Scope structure is determined at compile-time
–  Algol

•  Dynamic scoping
–  Procedure is called in the context of its caller

•  Environment of Caller
–  Scope structure is determined at run-time
–  LISP

5

Example
•  Draw static contour diagram
•  Draw dynamic contour diagram for both calls to P
a:begin
 integer m outer m
 procedure P
 m := 1;
 b:begin

 integer m; inner m
 P inner call
 end
 P outer call

 end

6

Dynamic Scopes and Functions
•  Dynamic scoping applies to all names (not just

variables)
•  Advantage:

–  We can write a general procedure that makes use of
procedures in the caller’s environment

•  No need to have all names defined in static context

•  Disadvantage:
–  If caller’s environment provides a different function than

what is intended to be used (see example page 109)
•  Programmer has to think about envt when writing calls

3/5/12

2

7

Which one is better?
•  General rule:

–  What is natural to humans will cause less problems in the
long run

–  If humans can understand static scoping better, than it will
result in higher quality programs in the long run

•  Dynamic scoping is confusing
–  Generally rejected (not used in new languages)
–  Static scoping agrees more with the program’s dynamic

behavior

8

Blocks Permit
Efficient Storage Management
•  Fortran used EQUIVALENCE

–  Not safe, since there is no guarantee of exclusive use of
memory

•  Blocks permit reuse of memory
a:begin integer m, n;
 b:begin real array X[1:100], real y;
 ...
 end
...
 c:begin integer k; real array M[0:50];
 ...
 end
end

9

Run-Time Stacks
•  Variables in blocks b and c are never used at the same

time
•  When exiting b, its variables may be discarded
•  Notice: Block entered last will be exited first

–  LIFO (last-in first-out) order
–  Can use a stack to organize activation records
–  When block is entered, its AR is pushed onto stack
–  When block is exited, its AR is popped off stack
–  Assumption: No local variables are initialized

10

Example

•  From previous program

n
m
…

y

X

n
m
…

n
m
…

M

k
n
m
…

n
m
…

enter (a) exit (a) enter (b) exit (b) enter (c) exit (c)

11

Responsible Design
•  Algol designers did not include

EQUIVALENCE
– Programmers might have asked for it…
–  Instead, they looked at the root of the

problem
– “Don’t ask what they want, ask how the

problem arises”
– Language designers are responsible for

the features in the language, not
programmers

12

Principles of Programming

•  The Responsible Design Principle
– Do not ask programmers what they want,

find out what they need.

3/5/12

3

13

Data Structures

•  Primitives
–  Mathematical scalars, like in Fortran
–  integer, real, Boolean
–  complex and double not included

•  Double: platform dependent
–  Not portable
–  Why? Because we need to know the size of a

word to know how big double is.
–  Alternate approaches:

•  specify precision
•  Let compiler pick precision

14

Why no complex?

•  Not primitive
–  Can be constructed using other types easily (2

reals)
•  Is it easy to use reals for complex?

–  Yes, but inconvenient
–  Need supporting operations

•  ComplexAdd(x, y, z), etc.
•  Designers’ choice:

–  Is it worthwhile to add the complexity/overhead of
another type? (conversions, coercion, operator
overload, etc.)

–  Will they get enough use?

15

Strings
•  Yet another data structure that needs full support

(operation, etc.)
•  Algol designers included strings as second-class

citizens
–  string type is only allowed for formal parameters
–  String literals can only be actual parameters
–  No operations
–  Strings can only be passed around in procedures
–  Cannot actually do anything with them

•  What’s the point???
–  String will end up getting passed to output procedure written

in a lower (machine) language that can handle it

16

Zero-One-Infinity
•  Programmers should not be required to

remember arbitrary constants
•  Fortran examples

–  Identifiers have max. 6 characters
–  There are at most 19 continuation cards
–  Arrays can have at most 3 dimensions

•  Regularity in Algol requires small number of
exceptions
–  Gives rise to Zero-One-Infinity principle
–  E.g.: Identifier names should be either 0, 1 or

unlimited length. (0 & 1 don’t make much sense)

17

Principles of Programming

•  The Zero-One-Infinity Principle
– The only reasonable numbers in

programming language design are zero,
one and infinity.

18

Arrays are Generalized
•  Arrays can have any number of dimensions
•  Lower bound can be number other than 1

–  More intuitive, and less error prone than fixed lower bound

•  Arrays are dynamic
–  Array bounds can be given as expressions, which allows

recomputation every time the block is entered
–  Array size is set until block is exited

•  (Fortran had fixed array sizes.)

3/5/12

4

19

Strong Typing
•  Strong typed language

–  Prevents programmer to perform meaningless operations on
data

–  Not to be confused with legitimate type conversions (integer
+ real (coercion))

•  Fortran
–  Weakly typed
–  Permits adding to a Hollerith constant, etc.
–  Equivalence allows setting up the same memory for different

types
•  Security and maintenance problem
•  Intentional type violation is not portable

•  Exception: System programming (C)
–  Have to treat memory cells as raw storage without regard to

type

20

Control Structures

•  Primitive statements are similar to
Fortran’s
– Assignment
– Control flow
– No input/output

21

Controls are Generalized: if

•  Fortran had many restrictions
– if (exp) simple statement

•  Statement restricted to GOTO, CALL, or
assignment

•  Algol removes restrictions
– All statements are allowed (even ‘if’ in

body of ‘if’)
– ‘else’ added to address false condition

22

Controls are Generalized: for
•  Algol’s for is more general than Fortran’s do

for i := 1 step 1 until N do
 sum := sum + Data[i]

–  Leading-decision loop:
for NewGuess := Improve(OldGuess)
 while abs(NewGuess – OldGuess) > 0.01
 do OldGuess := NewGuess

–  Same as while loop in newer languages:
NewGuess := Improve(OldGuess);
while abs(NewGuess – OldGuess) > 0.01 do
 begin
 OldGuess := NewGuess;
 NewGuess := Improve(OldGuess);
 end

23

Another for loop
 for i := 3, 7,
 11 step 1 until 16,
 i ÷ 2 while i >= 1,
 2 step i until 32 do
 print(i);

3 7 11 12 13 14 15 16 8 4 2 1 2 4 8 16 32
 24

Goal: Regularity

•  Algol was designed around regularity
– “Anything that you think you ought to be

able to do, you will be able to do.”
– Elaboration on zero-one-infinity principle

•  Remove inexplicable exceptions from the
language

3/5/12

5

25

begin … end
•  Algol-58:

–  All control structures should be allowed to have
any number of statements

–  All control statements were considered an opening
bracket, with corresponding closing bracket

•  if … endif
•  Algol-60

–  Largely due to the BNF notation, they realized that
one bracketing mechanism is enough for all

–  Defined begin-end bracketing
•  Define compound statements
•  Makes one statement out of a group of statements
•  Allowed anywhere a single statement is expected

26

Example
for i := 1 step 1 until N do
 sum := sum + Data[i]

for i := 1 step 1 until N do
 begin
 sum := sum + Data[i];
 Print Real (sum)

 end

27

begin-end Issues

•  Easy to omit begin-end
– Especially when single statement is used

first, then another is added
– Especially the case with well-indented code

for i := 1 step 1 until N do
 sum := sum + Data[i];
 Print Real (sum)

– This is a maintenance problem
– Good convention: always use bracketing

28

begin-end Has Double Duty
•  begin-end are used for

–  Compound statements
•  Collection of statements is handled as one statement

–  Blocks
•  Define nested scopes
•  Include definitions, in addition to statements

•  Any difference?
–  Compound statements do not need an activation record
–  Compiler must determine whether begin-end has

declarations, and generate block-entry code if so

