
CS 4100
More fun with lisp
April 27, 2011

==
Create a file called binarytree.lisp
with the contents below:
==
;;
;; Binary Trees
;;

;;
;; Constructors for binary trees
;;

(defun make-bin-tree-leaf (E)
 "Create a leaf."
 (list E))

(defun make-bin-tree-node (E B1 B2)
 "Create a node with element K, left subtree B1 and right subtree B2."
 (list E B1 B2))

;;
;; Selectors for binary trees
;;

(defun bin-tree-leaf-element (L)
 "Retrieve the element of a leaf L."
 (first L))

(defun bin-tree-node-element (N)
 "Retrieve the element of a node N."
 (first N))

(defun bin-tree-node-left (N)
 "Retrieve the left subtree of a node N."
 (second N))

(defun bin-tree-node-right (N)
 "Retrieve the right subtree of a node N."
 (third N))

;;
;; Recognizers for binary trees
;;

(defun bin-tree-leaf-p (B)
 "Test if binary tree B is a leaf."
 (and (listp B) (= (list-length B) 1)))

(defun bin-tree-node-p (B)
 "Test if binary tree B is a node."
 (and (listp B) (= (list-length B) 3)))

==
Load your file and test the following functions:
==
[1]> (load 'binarytree.lisp)
;; Loading file binarytree.lisp ...

;; Loaded file binarytree.lisp
T

[2]> (make-bin-tree-node '*
 (make-bin-tree-node '+
 (make-bin-tree-leaf 2)
 (make-bin-tree-leaf 3))
 (make-bin-tree-node '-
 (make-bin-tree-leaf 7)
 (make-bin-tree-leaf 8)))
(* (+ (2) (3)) (- (7) (8)))

[3]> (defun bin-tree-member-p (B E)
 "Test if E is an element in binary tree B."
 (if (bin-tree-leaf-p B)
 (equal E (bin-tree-leaf-element B))
 (let

((elmt (bin-tree-node-element B))
 (left (bin-tree-node-left B))
 (right (bin-tree-node-right B)))

 (or (equal E elmt)
 (bin-tree-member-p left E)
 (bin-tree-member-p right E)))))

BIN-TREE-MEMBER-P

[4]> (trace bin-tree-member-p)
;; Tracing function BIN-TREE-MEMBER-P.
(BIN-TREE-MEMBER-P)
[5]> (bin-tree-member-p '(+ (* (2) (3)) (- (7) (8))) 7)
T

[6]> (defun binary-tree-reverse (B)
 "Reverse binary tree B."
 (if (bin-tree-leaf-p B)
 B
 (let

((elmt (bin-tree-node-element B))
 (left (bin-tree-node-left B))
 (right (bin-tree-node-right B)))

 (make-bin-tree-node elmt
 (binary-tree-reverse right)
 (binary-tree-reverse left)))))

[9]> (trace binary-tree-reverse)
;; Tracing function BINARY-TREE-REVERSE.
(BINARY-TREE-REVERSE)
[10]> (binary-tree-reverse '(* (+ (2) (3)) (- (7) (8))))
(* (- (8) (7)) (+ (3) (2)))

[11]> (defun bin-tree-preorder (B)
 "Create a list containing keys of B in preorder."
 (if (bin-tree-leaf-p B)
 (list (bin-tree-leaf-element B))
 (let

((elmt (bin-tree-node-element B))
 (left (bin-tree-node-left B))
 (right (bin-tree-node-right B)))

 (cons elmt

 (append (bin-tree-preorder left)
 (bin-tree-preorder right))))))

BIN-TREE-PREORDER

[12]> (trace bin-tree-preorder)
;; Tracing function BIN-TREE-PREORDER.
(BIN-TREE-PREORDER)
[13]> (bin-tree-preorder '(* (+ (2) (3)) (- (7) (8))))
(* + 2 3 - 7 8)

==
Now write and test inorder and postorder traversal functions
**** You may find it easier to use the modified function and use tree below *****
==
[17]> (defun bin-tree-preorder (B)
 "Create a list containing keys of B in preorder."
 (if (bin-tree-leaf-p B)
 (list (bin-tree-leaf-element B))
 (let

((elmt (bin-tree-node-element B))
 (left (bin-tree-node-left B))
 (right (bin-tree-node-right B)))

 (append elmt
 (append (bin-tree-preorder left)

 (bin-tree-preorder right))))))
BIN-TREE-PREORDER

[18]> (bin-tree-preorder '((1) ((2) (4) (5)) ((3) (6) (7))))
(1 2 4 5 3 6 7)

