

 1

1

CS 4100
Pascal Highlights

April 1, 2011
Based on slides by Istvan Jonyer

Book by MacLennan

2

Procedure Constructor
• Procedure declaration in Pascal has a strict structure

procedure <name>(<formals>)
<label declarations>

<const declarations>

<type declarations>
<var declarations>

<procedure and function declarations>

begin
<statements>

end

• Similar to Algol’s
– Scope essentially the same

• Declarations: entire block including declarations and statements
• Formals: local declarations and statements

• Names bound before they are used to support one-pass compilation

3

Mutual Recursion
procedure P(…);
begin

.
 Q(…);
.

end;
procedure Q(…);
begin

.
 P(…);
.

end;

4

Procedure Constructor
• Opposite of top-down

– Uppermost procedures first, then lower ones they
call

• Mutual recursion
– Cannot define both procedures before one is

called
• Pascal’s solution

– “forward” declaration of procedures allows
recursion, and observation of structure principle
procedure Q(…); forward;

 2

5

No Blocks

• Pascal eliminates Algol’s blocks
– Compound statements but no blocks
– Variable declarations are only allowed

before begin in procedures and functions
– Simplifies name structures
– Complicates efficient use of memory

• Storage shared only between disjoint
procedures

6

Control Structures

• Pascal includes more control structures
than Algol-60, but they are simpler
– Provides simple I/O
– Introduces more structured control

structures (structure principle)
• 1-entry point 1-exit point controls

– Includes goto (rarely needed)
– Includes recursive procedures

7

for-Loop is Austere
• Pascal removes the baroque for loop, in

favor of one simpler than Fortran’s
for <name> := <exp> {to|downto} <exp> do

<statement>

– Only step size of 1 is allowed (+1 & -1)
• May be too restrictive

– Bounds are computed once, on entry
• Called definite iterator

– Always executes a definite number of times unless goto

8

Leading & Trailing Decision
Loops

• Indefinite iterators:
– Loop is controlled by condition, not counter
– Condition is tested each time

• Versus pre-computed in for-loop

• Leading Decision loop
while <condition> do <statement>

• Trailing Decision loop
repeat <statement>+ until <condition>

• Mid-Decision loop
– Can be implemented using “while true do”

and goto

 3

9

Pascal’s case-Statement
• Pascal introduces the labeled,

structured case-statement
case <expression> of
1: begin <statements> end;
2, 3: begin <statements> end;
4: begin <statements> end;
...

end case;

– This case-statement is self-documenting

10

Labels in case-Statement

• Case labels can be labels from
enumeration types
case nextFlight.status of
inAir: begin <statements> end;
onGround: begin <statements> end;
atTerminal:begin <statements> end;

end case;

11

Parameter Passing

• Pass by value
– Exactly like before, in Algol-60

• Pass by reference
– Allows output parameters
– Replaces pass by name
– Only allows meaningful variables to be

written into (unlike Fortran)

12

Pass as Constant
• Pass as constant was originally specified

instead of pass by value
– Like pass by value, but parameter could not be

modified in callee
• Safe

– Implemented as pass by reference
• Efficient

– Replace by pass by value, since pass as constant
can be circumvented using scoping (p 202)

• C++ provides this functionality by explicit pass by
reference and const definitions (f(const int &a))

 4

13

Two Orthogonal Issues

• Input vs output parameters
• Copy value vs pass address
• Decisions should be separated

14

Goals

• Main goal: good teaching language
– Reliability
– Simplicity
– Efficiency

• Successful!
• Third Generation

