
  

 1

1

CS 4100
Pascal Highlights

March 30, 2011
Based on slides by Istvan Jonyer

Book by MacLennan

2

Set Types
• Pascal provides facilities for sets

set of <ordinal type>

– Ordinal type: enumeration, char, Boolean,
subrange

– Not integer or real

var S, T: set of 1..10;

– S, T can hold a set of numbers between 1 and 10
• vs a single number between 1 and 10:
var S, T: 1..10;

3

Efficiency of Sets
• Set types are restricted to be ordinal to

be efficient
var S, T: set of 1..10;

– S, T take only 10 bits to represent: 1 bit for
each number
• Bit = 0 means number is not is set
• Bit = 1 means number is in set

– S := [1,2,3,5,7];

0
9

001010111S =
1087654321

4

Set Operations
• Initialization/Assignment

[ ]
T := [1..6];

• Membership
in
if 4 in T then …

• Union, intersection, difference
+, *, -
S * T, S + T, …

• Comparisons
– Subset, equality, non-equality
– <=, >=, =, <>
– Proper subset (<) is not provided



  

 2

5

Efficiency of Sets
• Sets are implemented using bit masks

– Therefore, operations on sets can be
implemented using logical operations

– Intersection: logical and
– Union: logical or
– Difference: logical exclusive or

• Logical operations are the fastest a
computer can do

• Memory efficiency: 1 bit per element
6

Sets

• Considered an example of elegance
– High-level
– Readable
– Efficient
– Secure

7

Elegance Principle

• Confine your attention to things that
look good because they are good

8

Array Types
• Arrays are more general than Algol’s

– Base type of arrays can be non-primitives
– Index types are introduced
– Subscripts can be other than integers

• Char, subrange, enumerated types
var A: array [1..100] of real;
var Occur: array [char] of integer;
var HoursWorked: array [Mon..Fri] of 0..24;

for day := Mon to Fri do
TotalHours := TotalHours + HoursWorked[day];



  

 3

9

Dimensions
• Only single-dimension arrays are

allowed!!!
• However:

– Base type of array can be another array!!!
var M: array [1..20] of array [1..100] of real;

– Dereferencing: M[3][5]
• Syntactic sugar:

var M: array [1..20, 1..100] of real;

M[3, 5]

(Doesn’t affect functionality, sweeter for human use.)
10

Static Arrays Only

• Algol’s dynamic arrays are not supported
– Type checking is done at compile time
– Array bounds are part of array type
– Hence, only static arrays are supported

11

Record Types
• Pascal provides the ability to group

heterogeneous data
– Versus homogeneous, using arrays
– Can contain any other type, even other records
type person =

record
name: string;
age: 16..100;
salary: 10000..100000;
sex: (male, female);
hireDate: date;

end;
string = array [1..30] of char;

12

Dereferencing Records

• Dereferencing is done using the ‘.’
var today: date;
newhire.age := 25;
newhire.hireDate := today;
newhire.hireDate.month := Mar;
if newhire.name[1] = ‘A’ then …
employee[en].hireDate.year := 2004;

• Opening one record for multiple access
with newhire do
begin
age := 25;
hireDate := today;
hireDate.month := Mar;

end;



  

 4

13

Variant Records
• Pascal supports saving storage using variant

records; allows alternative structures
– Not all components of a record may be used at the

same time
• E.g.: Plane altitude and location on ground

– C: union
• Union is unsafe as it allows access to any member

– Pascal attempts to solve this security problem
• Access only members allowed by tag field
• Initialization not required after tag value change, so type

system can be circumvented after all…
14

Variant Record Example
type plane = record

flight: 0..999;
equipment: (B727, A343, B747);
case status: (inAir, taxi, atTerminal) of

 inAir: (
altitude: 0..999999;
heading: 0..359);

taxi: (
location: airport;
runway: runwayNumber);

atTerminal: (
parked: airport;
gate: 1..100);

end;

15

Pointers
• Pascal provides typed pointers, which

are more secure than untyped ones
var p: ↑real;

x: real;
c: char;

begin
new(p);
p↑ := 3.14159;
c := p↑; {Illegal!}

end;
– If P was untyped (p: ↑pointer), assignment to c would be

allowed (and meaningless)

16

Type Equivalence

• Type checking requires that only variables
with identical types can be
compared/assigned to each other

• What does ‘identical’ mean?
– Structural equivalence

• Types having the same structure are identical
var x: record id: integer; w: real end;
var y: record id: integer; w: real end;

– Name equivalence
• Types having the same name are identical



  

 5

17

Structural equivalence
type person = record id:integer; weight real; end
type car = record id:integer; weight real; end
var x: person;
var y: car;
x:= y;

– Legal by structural equivalence
– Probably don’t want
– Name equivalence fixes this - person and car are different names

18

Name Structures

• Name binding mechanisms in Pascal
– Constant bindings
– Type bindings
– Variable bindings
– Procedure and function bindings
– Implicit enumeration bindings
– Label bindings

19

Constants
• Pascal introduces constant declarations

const <name>=<constant>;
const MaxArray = 100;
– Allows the naming of constants in program
– Numbers should not be used in programs

• Application of Abstraction Principle

20

Constants - Limitations
• Constant cannot be described by an

expression
– Illegal:
const MaxArray = MaxData - 1;

• Expressions are not allowed in variable
and type declarations
– Illegal:
var A: array [0.. MaxData – 1] of real;



  

 6

21

Procedure Constructor
• Procedure declaration in Pascal has a strict structure

procedure <name>(<formals>)
<label declarations>

<const declarations>

<type declarations>
<var declarations>

<procedure and function declarations>

begin
<statements>

end

• Similar to Algol’s
– Scope essentially the same

• Declarations: entire block including declarations and statements
• Formals: local declarations and statements

• Names bound before they are used to support one-pass compilation


