

 1

1

CS 4100
Pascal Highlights

March 28, 2011
Based on slides by Istvan Jonyer

Book by MacLennan

2

Chapter 5:
Return to Simplicity: Pascal

• 1964 IBM: PL/I (Programming Language one)
evolves to be a huge language
– Union of Fortran, Algol and COBOL (rather than

their intersection)
– Swiss Army Knife Approach
– Language is hard to use

• Proponents say, enough to learn subset of PL/I
• In reality, due to feature interaction, this is not possible

• Hard (or even futile) to design to design a
language that is everything to all
programmers

3

Extensible Languages

• Another approach is to design a small
‘kernel’ language and make it extensible
– Kernel provides basic functionality
– Extensibility should please everyone

4

Extensions: Operators
• Operator extension (vs overload)

– Ability to create new operators
– Example: symmetric difference of real numbers
operator 2 x # y;
value x, y; real x, y;
begin
return abs(x – y)
end

– Allows:
if l # r > 0 then …

• C++ has operator overload, variation of this

 2

5

Extensions: Syntax
• Syntax macros allowed general syntax

extension
real syntax sum from i = lb to ub of elem;
value lb, ub;
integer lb, ub, i; real elem;
begin real s; s := 0;
for i := lb step 1 until ub do

s := s + elem;
return s;

end;

– Allows:
total := sum from k = 1 to N of Wages[k];

6

Issues with Extensibility
• Inefficiency

– New syntax is translated to kernel constructs
– Inefficiencies are magnified

• Poor diagnostics
– Compiler errors are issued at kernel-level, which

may be confusing to programmer
– Language is hard to read, since people make up

their own syntax
• Upside

– Research on minimal requirement for PL’s

7

Move Toward Simplicity
• Niklaus Wirth suggests changes to

Algol-60
– Non-numeric data types
– Removing baroque features
– Maintain efficiency (compile and run-time)
– Can be taught systematically

• Implements Algol-W (after changes are
rejected by Algol committee)
– Evolves into Pascal, competed in 1970

8

Pascal - 3rd Generation

• Developed 1968-1970
– 29 page report

• Revised 1972
• International Standard 1982
• Popular teaching language

 3

9

Pascal’s Syntax

• Pascal’s syntax is like Algol’s (p. 171)
• Major changes

– program … end.
– procedure <declarations> begin

<statements> end;
– var, const, type
– for-loop: simplified
– case-statement

10

var, const, type
• const

– Constant parameter declaration
 const Max = 900;

• type
– Type declarations introduced by “type”
 type index = 1 .. Max;

• var
– Variables declared after “var”
 var

 i: index;
 sum, ave, val: real;

11

Data Structures

• Primitives are like Algol’s
– real, integer, Boolean, char
– Char holds one character

• Strings are arrays of chars

12

Enumeration Types: Issues
• Problem:

– How to manipulate non-numeric data?
– Mon, Tue, Wed,… Male/Female,

• Using number is very confusing (error prone)
– today := 5; // Friday
– tomorrow := today + 1; // next day
– Issues: Sunday: 0 or 1? Start week with Monday?

• Assign numbers to meaningful variables
– Mon = 1, Tue = 2, … male = 0, female = 1, …

• Security Issue: compiler allows meaningless
operations

• Year : = (month + male)/DayOfWeek

 4

13

Enumeration Types
• Pascal introduces enumeration types

type
month = (Jan, Feb, Mar, Apr, May, …);
sex = (male, female);

var
thisMonth : month;
gender : sex;

begin
thisMonth := Feb;
gender := female;

• Supported operations for all enumerated types
 :=, succ, pred, =, <>, <, =, >, <=, >=

14

Enumeration Types
• Advantages

– High level
• Lets programmers write what they mean

– Secure
• Type checking is performed
• No meaningless operations

– Efficient
• Allows optimization of storage
• E.g.: Days of week can be stored in 3 bits

15

Subrange Types
• Improve security by allowing variable to take

on values meaningful for their use only
var DayOfMonth: 1 .. 31;
type Weekday = Mon .. Fri;

– Checking of valid values are checked as part of
type checking

– Many programming errors come down to subrange
violations (array out of bounds)

– Efficient: Allows compact storage of variable
– Subranges of discrete types are allowed

• integer, enumerated, char
16

Set Types
• Pascal provides facilities for sets

set of <ordinal type>

– Ordinal type: enumeration, char, Boolean,
subrange

– Not integer or real

var S, T: set of 1..10;

– S, T can hold a set of numbers between 1 and 10
• vs a single number between 1 and 10:
var S, T: 1..10;

 5

17

Efficiency of Sets
• Set types are restricted to be ordinal to

be efficient
var S, T: set of 1..10;

– S, T take only 10 bits to represent: 1 bit for
each number
• Bit = 0 means number is not is set
• Bit = 1 means number is in set

– S := [1,2,3,5,7];

0
9

001010111S =
1087654321

18

Set Operations
• Initialization/Assignment

[]
T := [1..6];

• Membership
in
if 4 in T then …

• Union, intersection, difference
+, *, -
S * T, S + T, …

• Comparisons
– Subset, equality, non-equality
– <=, >=, =, <>
– Proper subset (<) is not provided

