CS 4100
LISP

April 22, 2011
Based on slides by Istvan Jonyer
Book by MacLennan
Chapters 9, 10, 11

Special Property: apval

+ Assigning a value to an atom
(set ‘Europe ‘(England France ..))
—is the same as

(putprop ‘Europe ‘(England France ..)
‘apval)

‘Applied value’ points to the list the atom is
bound to

List Representation

+ Lists are represented as linked lists
(to be or not to be)

EOOomD,
((to 2) (be 2))

[, ]
[T1[0 [0

to

Origins of car and cdr

First LISP was designed for the IBM 704
— 1 word had 2 fields
+ Address field
+ Decrement field
— car: “Content of Address part of Register”
— cdr: “Content of Decrement part of Register”

car cdr

to be or




Implementation of cons
+ car and cdr simply return the respective
parts of the register
+ cons has the job of constructing a new
register using two pointers
— Allocate new memory location

— Fill'in left and right parts of new location
(cons ‘to ‘(be or not to be))

be or not to be nil

(set
(set
(set
(set

o

Sublists Can Be Shared

‘L ‘(or not to be))
‘M ‘(to be))
‘N (cons (cadr M) L))

‘0 (cons (car M) N)) |

[‘E}q ﬁ} seReefee

6

[10]> (set 'L '(or not to be))
(OR NOT TO BE)

[11]> (set 'M '(to be))

(TO BE)

[12]> (set 'N (cons (cadr M) L))
(BE OR NOT TO BE)

[13]> (set 'O (cons (car M) N))
(TO BE OR NOT TO BE)

List Structures Can Be Modified

Functions discussed so far do not
modify lists

Modifying lists is possible via

—replaca (replace address part)

—replacd (replace decrement part)

It is possible that more than one symbol
points to a list

— which can be modified using replaca and
replacd

— This can cause unexpected problems (like
equivalence in Fortran) 8




Iteration by Recursion

* lteration is done by recursion

* lteration is mostly needed to perform an

operation on every element of a list
— This can be done using combination of

« testing for end of list,

« operating on first element, and

« recursing on rest of the list

(defun plus-red (a)

(if (null a) nil
(plus (car a) (plus-red (cdr a))) ))

— Notice: No array bounds are needed! Function is
very general

Iteration = Recursion

» Theoretically, recursion and iteration have the
same power, and are equivalent

* One can be translated to the other (although
may not be practical)
— Recursion - iteration

« Use iteration and keep track of auxiliary information in an
explicit stack

— Iteration - recursion
* Need to pass control information (variables)

Storage Reclamation

» What happens to cons’d pointers that are no
longer in use?

+ Explicit reclamation is the obvious / traditional
way
— C: malloc, calloc, realloc, free
— C++: new, delete
— Pascal: new, dispose
* Issues
— Complicates programming
« Requires the programmer to keep track of pointers
— Violates security of the environment
« Memory freed, but still referenced (dangling pointers) 11

Automatic Storage Reclamation

+ It would be nice for the system to

automatically ‘reclaim’ storage no longer used

» System can keep track of number of

references to storage

— When references decrease to 0, storage is
returned to ‘free-list’

Advantage:

— Storage reclaimed immediately as last reference is
destroyed

Disadvantage:

— Cyclic structures (points to itself) cannot be
reclaimed




Garbage Collection

+ A different approach is garbage collection
— Do not keep track of references to location
— When last reference is destroyed, we still do not do
anything, and leave the memory as garbage
(unused, non-reusable storage, littering the
memory)
— Collect garbage if system runs out of storage
« Mark all areas unused
« Then examine all visible pointers and mark storage they
point to as ‘used’
« Leftover is garbage, and can be put on free-list

— This is called the mark-and-sweep method

Garbage Collection

Advantages

— Fast until runs out of memory

— No additional memory is needed for tracking
references

Disadvantages

— Garbage collection itself can be slow
« If memory is large, and have many references
« Must halt entire system, since all dynamic memory must
be marked as unused first

Java uses this approach




