

 1

1

CS 4100
LISP

April 20, 2011
Based on slides by Istvan Jonyer

Book by MacLennan
Chapters 9, 10, 11

2

Data Constructor
• The data constructor is the list
• Lists can have 0, 1 or more elements

– Observes the Zero-One-Infinity principle
– Empty list: ‘() or nil

• All lists are non-atomic (except empty
list)
> (atom ‘()) or (atom nil) or (atom 5)
t
> (atom ‘(to be)) or (atom ‘(()))
nil

3

Car and Cdr
• Accessing parts of a list

– Car
• Accesses first element of the list
>(car ‘(to be or not to be))
to
>(car ‘((to be) or (not to be)))
(to be)
• Returns an element

– cdr
• Accesses rest of the list (list without first element)
>(cdr ‘(to be or not to be))
(be or not to be)
• Returns a list

4

Combining car and cdr
• How do we select the second element?

>(car (cdr ‘(to be or not to be)))
be

• Third?
>(car (cdr (cdr ‘(to be or not to be))))
or

• How about this?
(set ‘DS ‘((Don Smith) 45 30000 (Aug 4 80)))

– Select day of hire
>(car (cdr (car (cdr (cdr (cdr DS))))))
4

• This can be simplified:
>(cadadddr DS)
4

 2

5

Defining Functions
(set ‘DS ‘((Don Smith) 45 30000 (Aug 4 80)))

• Define functions to replace cadadddr
(defun hire-date (r) (cadddr r))
(defun day (d) (cadr d))

– Now we can select the day of the hire date as
(day (hire-date DS))

• This is more readable and more maintainable
6

Property Lists

• List like this are hard to maintain and read:
((Don Smith) 45 30000 (Aug 4 80))
– We don’t know what elements mean
– Hard to change the structure of the list

• A better way is to use property lists:
(name (Don Smith) age 45 salary 30000 hire-date (Aug 4 80))
– This way we can search for property name we

want (age) and return value (45)
– Order of properties becomes immaterial
– General form (p1 v1 p2 v2 … pn vn)

7

Accessing Property Lists
(name (Don Smith) age 45 salary 30000 hire-date (Aug 4 80))

• How do we find the property?
– If property we want is the first one, return second

element of list
– else skip first 2 elements, and start over

• In LISP (get property p of list l)
(defun getprop (p l)

 (if (eq (car l) p)
(cadr l)
(getprop p (cddr l))))

8

Association Lists
• What if the property does not have a

value? (e.g. “retired”)
• What is the property has more than a

single value?
– Of course, these can be solved using the

property list, if we understand the
properties of each property…

– A better, more foolproof way is to use
association-lists:

((name (Don Smith))
 (age 45)
 (salary 30000)
 (hire-date (Aug 4 80)))

 3

9

Constructing Lists

• Need inverse of car and cdr
– car: get first of list
– cdr: get rest of list

• Inverse:
– cons: append first of list to rest of list

>(cons ‘to ‘(be or not to be))
(to be or not to be)
>(cons ‘(to be) ‘(or not to be))
((to be) or not to be)

– Returns a list

10

Appending Lists
>(cons ‘(to be) ‘(or not to be))
((to be) or not to be)

• But we’d like (to be or not to be)
>(append ‘(to be) ‘(or not to be))
(to be or not to be)

• How would we implement append ?
– We need to extract and cons the last element of

the first list successively
(defun append (L M)
(if (null L)
 M
 (cons (car L) (append (cdr L) M))))

11

[3]> (defun mappend (L M) (if (null L) M (cons
(car L) (mappend (cdr L) M))))

MAPPEND

[4]> (trace mappend)
;; Tracing function MAPPEND.
(MAPPEND)

[5]> (mappend '(to be) '(or not to be))
1. Trace: (MAPPEND '(TO BE) '(OR NOT TO BE))
2. Trace: (MAPPEND '(BE) '(OR NOT TO BE))
3. Trace: (MAPPEND 'NIL '(OR NOT TO BE))
3. Trace: MAPPEND ==> (OR NOT TO BE)
2. Trace: MAPPEND ==> (BE OR NOT TO BE)
1. Trace: MAPPEND ==> (TO BE OR NOT TO BE)
(TO BE OR NOT TO BE)

12

Atoms

• LISP was written for AI
– to represent complex relationships among objects
– Objects can have many properties in real life;

Atoms allow for modeling this
• Each atom comes with its own property list,

and some built-in properties
– pname (print name); mandatory
– apval (applied value); to store data

• If atom is bound to a value
– expr (expression); to store program

• If atom is bound to a program

 4

13

Adding Properties to Atoms

• Other, arbitrary properties may also be added to
an atom using putprop (not in our clisp: setf)

(putprop atom propValue propName)
(putprop ‘France ‘Paris ‘capital)

– Paris, in this case, is also an atom
• Find out the value of a property using get

>(get ‘France ‘capital)
Paris
>(get ‘France ‘pname)
“France”

