

 1

1

CS 4100
LISP

April 15, 2011
Based on slides by Istvan Jonyer

Book by MacLennan
Chapters 9, 10, 11

2

Fifth Generation

• Skip 4th generation: ADA
– Data abstraction
– Concurrent programming

• Paradigms
– Functional: ML, Lisp
– Logic: Prolog
– Object Oriented: C++, Java

3

Chapter 9:
List Processing: LISP

• History of LISP
– McCarthy at MIT was looking to adapt high-level

languages (Fortran) to AI - 1956
– AI needs to represent relationships among data

entities
• Linked lists and other linked structures are common

– Solution: Develop list processing library for Fortran
– Other advances were also made

• IF function: X = IF(N .EQ. 0, ICAR(Y), ICDR(Y))
• List processing and conditional statement combined

4

What do we need?

• Recursive list processing functions
• Conditional expression

• First implementation
– IBM 704
– Demo in 1960

• Common Lisp standardized

 2

5

Example LISP Program

(defun make-table (text table)

(if (null text)
table
(make-table (cdr text)

(update-entry table (car
text))

)
)

)

• Called S-expressions (Symbolic) 6

Central Idea: Function
Application

• There are 2 types of languages
– Imperative

• Like Fortran, Algol, Pascal, C, etc.
• Routing execution from one assignment statement to

another
– Applicative

• LISP
• Applying a function to arguments

– (f a1 a2 … an)
• No need for control structures

7

Prefix Notation

• Prefix notation is used in LISP
– Sometimes called Polish notation (Jan Lukasiewicz)

• Operator comes before arguments
• (plus 1 2) same as 1 + 2 in infix
• (plus 5 4 7 6 8 9)

• Functions cannot be mixed because of the list
structure

• (As in Algol: 1 + 2 – 3)
• LISP is fully parenthesized
• No need for precedence rules

8

cond Function

(cond
((null x) 0)
((eq x y) (f x))
(t (g y)))

• Equivalent to
if null(x) then 0
elsif x = y then f(x)
else g(y)

 3

9

Function Definition
(defun make-table (text table)

(if (null text)
table
(make-table (cdr text)

(update-entry table (car text))
)

)
)

• Function definition is achieved by calling a
function(!) called defun, with arguments
– Name (make-table)
– Parameters (text table)
– Body (if …) 10

Everything Is a List

• Why is everything a list in LISP?
– Simplicity Principle

• A language should be as simple as possible.
There should be a minimum number of
concepts, with simple rules for their
combination.

• If there is only one basic mechanism in the
language, the language is easier to learn,
understand, and implement.

11

The List is the Data Structure

• Lists contain symbolic data
(set ‘text ‘(to be or not to be))
– Lists like (to be or not to be) can be manipulated

like numbers in other languages (compared,
concatenated, split, passed to functions,…)

• Atoms
– The list (to be or not to be) has 4 atoms

• to, be, or, not
– Functions are provided for manipulation of atoms

• Lists of lists
((to be or not to be) (that is the question))

12

Programs Are Lists
• Programs are also represented as lists

– (make-table text nil)
• Can be a list

– with atoms make-table, text, and nil
• Can be a function

– ‘make-table’ with 2 arguments

• How do we tell apart the program from a data
list?
– Quoted lists are not interpreted:

• (set ‘text ‘(to be or not to be))

– Unquoted ones are interpreted
• (set ‘text (to be or not to be))

(function: to)

 4

13

Implications?

• If programs are lists
– and data is also list
– then we can generate a list that can be interpreted

as a program
• In other words

– We can write a program to write and execute
another program

– Useful in artificial intelligence
• Reductive aspects?

14

LISP Is Interpreted

• Most LISP systems provide interactive
interpreters
– One can enter commands into the

interpreter, and the system will respond
> (plus 2 3)
5
> (eq (plus 2 3) (difference 9 4))
t (means ‘true’)

15

Pure vs Pseudo-Functions

• Pure functions
– plus, eq, …
– Only effect is the computation of a value

• Pseudo-functions
– Has side-effect; more like a procedure
– set

• (set ‘text ‘(to be or not to be))
• Side effect:

– Sets the value of text to (to be or not to be)
• Return value:

– (to be or not to be)

16

Data Structures

• Primitives
– Numbers

• Operations: plus, minus, times, eq, etc.
– Non-numeric atoms

• Strings of characters used as symbols
– Much like enumerated types in Pascal
– Not used as strings

• Operations: eq
• Special atoms

– t: true
– nil: false; non-existent atom; empty list

