
FORTRAN, Part 4

CS4100
February 21, 2011

SCOPE

• Scope of a binding of a name
– Region of program where binding is visible

• In FORTRAN
– Subprogram names GLOBAL

• Can be called from anywhere
– Variable names LOCAL

• To subprogram where declared

Contour Diagram

S
R

X
Y

N

Y
N

X

Main program

R S

Global scope

R(2)

S(X)

S(X)

Once we have subprograms…

• We need to find a way to share data
– Parameters

• Pass by reference
• Pass by value-result

– Caller copies value of actual to formal variable
– On return, caller copies result value to actual

» Omit for constants or expressions as actuals

Once we have subprograms…
• Share Data With Just Parameters?

– Cumbersome, and hard to maintain
– Produces long list of parameters
– If data structure changes, there are many changes

to be made
– Violates information hiding

Sharing Data
• FORTRAN’s solution:
• COMMON blocks allow more flexibility

– Allows sharing data between subprograms
– Scope rules necessitation this

• Consider a symbol table

SUBROUTINE ARRAY2 (N, L, C, D1, D2)
COMMON /SYMTAB/ NAMES(100), LOC(100), TYPE(100)
...
SUBROUTINE VAR (N, L, C)
COMMON /SYMTAB/ NAMES(100), LOC(100), TYPE(100)

COMMON Problems

• Tedious to write
• Unreadable
• Virtually impossible to change AND
• COMMON permits aliasing, which is

dangerous
– If COMMON specifications don’t agree,

misuse is possible

Aliasing

• The ability to have more than one name
for the same memory location

• Very flexible!

COMMON /B/ M, A(100)

COMMON /B/ X, K, C(50), D(50)

EQUIVALENCE
• Since dynamic memory allocation is not

supported, and memory is scarce,
FORTRAN has EQUIVALENCE

DIMENSION INDATA(10000), RESULT(8000)

EQUIVALENCE INDATA(1), RESULT(8)

• Allows a way to explicitly alias two
arrays to the same memory

EQUIVALENCE

• This is only to be used when usage of
INDATA and RESULT do not overlap

• Allows access to different data types (float as
if it was integer, etc.)

• Has same dangers as COMMON

DESIGN: Syntactic Structures

• Languages are defined by lexics and syntax
– Lexics

• Way to combine characters to form words or symbols
• E.g. Identifier must begin with a letter, followed by no

more than 5 letters or digits
– Syntax

• Way to combine symbols into meaningful instructions

• Syntactic analysis:
Lexical analyzer (scanner)
Syntactic analyzer (parser)

Fixed Format Lexics
• Still using punch-cards!
• Particular columns had particular meanings
• Statements (columns 7-72) were free format

Sequence number73-90

Statement7-72

Continuation6

Statement number1-5

PurposeColumns

Blanks Ignored

• FORTRAN ignored spaces (not just white
spaces)

• Thisisveryunfortunate!

DIMENSION INDATA(10000), RESULT(8000)
D I M E N S I O N I N D A T A (1 0 0 0 0), R E S U L T (8000)
DIMENSIONINDATA(10000),RESULT(8000)

• Lexing and parsing such a language is very
difficult

Blanks Ignored

• In combination with other features, it
promoted mistakes

DO 20 I = 1. 100
DO 20 I = 1, 100
DO20I = 1.100

• Variable DO20I is unlikely, but . and , are
next to each other on the keyboard…

No Reserved Words

• FORTRAN allows variable named IF
DIMENSION IF(100)

• How do you read this?
IF (I - 1) = 1 2 3
IF (I - 1) 1, 2, 3

• The compiler does not know what
IF (I - 1) will be
– Needs to see , or = to decide

Algebraic Notation

• One of the main goals was to facilitate
scientific computing
– Algebraic notation had to look like math
– (-B + SQRT(B**2 – 4*AA*C))/(2*A)
– Very good, compared to our pseudo-code

• Problems
– How do you parse and execute such a

statement?

Operators Need Precedence

• b2 – 4ac == (b2) – (4ac)
• ab2 == a(b2)
• Precedence rules

1. Exponentiation
2. Multiplication and division
3. Addition and subtraction

• Operations on the same level are associated to the
left (read left to right)

• How about unary operators (-)?

Some Highlights
• Integer type is overworked

– Integer
– Character strings
– Addresses

• Weak typing
• Combine the two and we have a security loophole

– Meaningless operations can be performed without warning

Some Highlights

• Arrays
– Only data structure
– Data constructor
– Static
– Limited to three dimensions
– Restrictions on index expressions
– Optimized
– Column major order for 2-dimensional
– Not required to be initialized

