
FORTRAN, Part 2

CS4100
February 16, 2011

Reminders

• Jeopardy tournament with Watson ends
today

• Project proposals due Friday
– Please upload to submission system

GOTO: A Two-Edged Sword

• Very powerful
– Can be used for good or for evil

• But seriously is GOTO good or bad?
– Good: very flexible, can implement

elaborate control structures
– Bad: hard to know what is intended
– Violates the structure principle

But that’s not all!
• We just saw the Computed GOTO:

GOTO (L1, L2, …, Ln), I
– Jumps to label 1, 2, …

• Now consider the Assigned GOTO:
GOTO N, (L1, L2, …, Ln)
– Jumps to ADDRESS in N
– List of labels not necessary
– Must be used with ASSIGN-statement
ASSIGN 20 TO N

– Put address of statement 20 into N
– Not the same as N = 20 !!!!

Ex: Computed and Assigned
GOTOs

ASSIGN 20 TO N

GOTO (20, 30, 40, 50), N

• N has address of stmt
20, say it is 347

• Look for 347 in jump
table - out of range

• Not checked
• Fetch value at 347 and

use as destination for
jump

• Problem???
– Computed should

have been Assigned

Ex: Computed and Assigned
GOTOs

I = 3

GOTO I, (20, 30, 40, 50)

• I expected to have an
address

• GOTO statement with
address 3
– Probably in area used by

system, i.e. not a stmt
• Problem???

– Assigned should have
been computed

Principles of Programming

• The Syntactic Consistency Principle
– Things that look similar should be similar

and things that look different should be
different.

Syntactic Consistency

• Best to avoid syntactic forms that can be converted to
other forms by a simple error
– ** and *
– Weak Typing (more on this later)

• Integer variables
– Integers
– Addresses of statements
– Character strings

• Maybe a LABEL type?
– Catch errors at compile time

Even worse…

• Confusing the two GOTOs will not be
caught by the compiler

• Violates the defense in depth principle

Principles of Programming

• The Defense in Depth Principle
– If an error gets through one line of defense,

then it should be caught by the next line of
defense.

The DO-loop
• Fortunately, FORTRAN provides the DO-loop
• Higher-level than IF-GOTO-style control structures

– No direct machine-equivalency
 DO 100 I = 1, N
 A(I) = A(I) * 2

100 CONTINUE

• I is called the controlled variable
• CONTINUE must have matching label
• DO allows stating what we want: higher level

– Only built-in higher level structure

Nesting
• The DO-loop can be nested

DO 100 I = 1, N
 ...

DO 200 J = 1, N
 ...

200 CONTINUE
100 CONTINUE
– They must be correctly nested
– Optimized: controlled variable can be stored in

index register
– Note: we could have done this with GOTO

Principles of Programming

• Preservation of Information Principle
– The language should allow the representation of

information that the user might know and that the
compiler might need.

• Do-loop makes explicit
– Control variable
– Initial and final values
– Extent of loop

• If and GOTO
– Compiler has to figure out

Subprograms
• AKA subroutine

– User defined
– Function returns a value

• Can be used in an expression

• Important, late addition
• Why are they important?

– Subprograms define procedural abstractions
– Repeated code can be abstracted out, variables

formalized
– Allow large programs to be modularized

• Humans can only remember a few things at a time
(about 7)

Subprograms
SUBROUTINE Name(formals)

…body…

RETURN

END

…
CALL Name (actuals)

• When invoked
– Using call stmt
– Formals bound to

actuals
– Formals aka dummy

variables

Example
SUBROUTINE DIST (d, x, y)

D = X – Y

IF (D .LT. 0) D = -D

RETURN

END

…

CALL DIST (DIFFER, POSX, POSY)

…

Principles of Programming

• The Abstraction Principle
– Avoid requiring something to be stated

more than once; factor out the recurring
pattern.

Libraries

• Subprograms encourage libraries
– Subprograms are independent of each

other
– Can be compiled separately
– Can be reused later
– Maintain library of already debugged and

compiled useful subprograms

Parameter Passing

• Once we decide on subprograms, we
need to figure out how to pass
parameters

• Fortran parameters
– Input
– Output

• Need address to write to
– Both

Parameter Passing

• Pass by reference
– On chance may need to write to

• all vars passed by reference
– Pass the address of the variable, not its value
– Advantage:

• Faster for larger (aggregate) data constructs
• Allows output parameters

– Disadvantage:
• Address has to be de-referenced

– Not by programmer—still, an additional operation
• Values can be modified by subprogram
• Need to pass size for data constructs - if wrong?

A Dangerous Side-Effect
• What if parameter passed in is not a variable?
SUBROUTINE SWITCH (N)
N = 3
RETURN
END
…
CALL SWITCH (2)
• The literal 2 can be changed to the literal 3 in

FORTRAN’s literal table!!!
– I = 2 + 2 I = 6????
– Violates security principle

Principles of Programming

• Security principle
– No program that violates the definition of

the language, or its own intended structure,
should escape detection.

Pass by Value-Result

• Also called copy-restore
• Instead of pass by reference, copy the value of actual

parameters into formal parameters
• Upon return, copy new values back to actuals
• Both operations done by caller

– Can know not to copy meaningless result
• E.g. actual was a constant or expression

• Callee never has access to caller’s variables

Subprograms
SUBROUTINE Name(formals)

…body…

RETURN

END

…
CALL Name (actuals)

• When invoked
– Using call stmt
– Formals bound to

actuals
– Formals aka dummy

variables

Example
SUBROUTINE DIST (d, x, y)

D = X – Y

IF (D .LT. 0) D = -D

RETURN

END

…

CALL DIST (DIFFER, POSX, POSY)

…

Activation Records

• What happens when a subprogram is
called?
– Transmit parameters
– Save caller’s status
– Enter the subprogram
– Restore caller’s state
– Return to caller

What happens exactly?

• Before subprogram invocation:
– Place parameters into callee’s activation

record
– Save caller’s status

• Save content of registers
• Save instruction pointer (IP)

– Save pointer to caller’s activation record in
callee’s activation record

– Enter the subprogram

What happens exactly?

• Returning from subprogram:
– Restore instruction pointer to caller’s
– Return to caller
– Caller needs to restore its state (registers)
– If subprogram is a function, return value

must be made accessible

Contents of Activation Record

• Parameters passed to subprogram
• P (resumption address)
• Dynamic link (address of caller’s

activation record)
• Temporary areas for storing registers

