
FORTRAN, Part 1

CS4100
February 14, 2011

Reminders

• Jeopardy tournament with Watson
starts today

• Assn 2 due today
– Hard copy now
– Upload to submission system

• Project proposals due Friday
– Please upload to submission system

Highlights of Psuedo-Code
• Virtual computer

– More regularity
– Higher level

• Decreased chance of errors
– Automate tedious and error-prone tasks

• Increased security
– Error checking

• Simplify debugging
– trace

Now: FORTRAN
The First Generation

• Early 1950s
– Simple assemblers and libraries of

subroutines were tools of the day
– Automatic programming was considered

unfeasible
– Good coders liked being masters of the

trade
• Laning and Zierler at MIT in 1952

– Algebraic language

Backus at IBM
• Visionary at IBM
• Recognized need for faster coding practice
• Need “language” that allows decreasing costs to

linear, in size of the program
• Speedcoding for IBM 701

– Language based on mathematical notation
– Interpreter to simulate floating point arithmetic

Backus at IBM
• Goals

– Get floating point operations into hardware: IBM 704
• Exposes deficiencies in pseudo-code

– Decrease programming costs
• Programmers to write in conventional mathematical notation
• Still generate efficient code

• IBM authorizes project
– Backus begins outlining FORTRAN

• IBM Mathematical FORmula TRANslating System
– Has few assistants
– Project is overlooked (greeted with indifference and

skepticism according to Dijkstra)

Meanwhile
• Grace Hopper organizes Symposia via Office of Naval Research

(ONR)
• Backus meets Laning and Zierler
• Later (1978) Backus says:

– “As far as we were aware we simply made up the language as we
went along. We did not regard language design as a difficult
problem, merely as a simple prelude to the real problem: designing
a compiler which could produce efficient programs.”

• FORTRAN compiler works!

FORTRAN timeline
• 1954: Project approved
• 1957: FORTRAN

– First version released
• 1958: FORTRAN II and III

– Still many dependencies on IBM 704
• 1962: FORTRAN IV

– “ANS FORTRAN” by American National Standards Institute
– Breaks machine dependence
– Few implementations follow the specifications

• We’ll look at 1966 ANS FORTRAN

FORTRAN

• Goals
– Decrease programming costs (to IBM)
– Efficiency

Sample FORTRAN program
DIMENSION DTA(900)
SUM 0.0
READ 10, N

10 FORMAT(I3)
DO 20 I = 1, N
READ 30, DTA(I)

30 FORMAT(F10.6)
IF (DTA(I)) 25, 20, 20

25 DTA(I) = -DTA(I)
20 CONTINUE

…

Structural Organization

• Preliminary specification did not include subprograms
(like in pseudo-code)

• FORTRAN I, however, already included subprograms

Main program

Subprogram 1

Subprogram n

.

.

.

Constructs

• Declarative constructs
– (First part in pseudo-code: data

initialization)
– Declare facts about the program, to be

used at compile-time
• Imperative constructs

– (Second part in pseudo-code: program)
– Commands to be executed during run-time

Declarative Constructs

• Declarations include
– Allocate area of memory of a specified size
– Attach symbolic name to that area of memory
– Initialize the memory

• FORTRAN example
– DIMENSION DTA (900)
– DATA DTA, SUM / 900*0.0, 0.0

• initializes DTA to 900 zeroes
• SUM to 0.0

Imperative Constructs
• Categories:

– Computational
• E.g.: Assignment, Arithmetic operations
• FORTRAN: AVG = SUM / FLOAT(N)

– Control-flow
• E.g.: comparisons, loop
• FORTRAN:

– IF-statements
– DO loop
– GOTO

– Input/output
• E.g.: read, print
• FORTRAN: Elaborate array of I/O instructions (tapes, drums,

etc.)

Building a FORTRAN Program
• Interpretation unacceptable, since the selling point

is speed
• Need the following stages to build:

1. Compilation
Translate code to relocatable object code

2. Linking
Incorporating libraries (resolving external dependencies)

3. Loading
Program loaded into memory; converted from relocatable to
absolute format

4. Execution
Control is turned over to the processor

Compilation

• Compilation has 3 phases
– Syntactic analysis

• Classify statements, constructs and extract their parts
– Optimization

• FORTRAN has considerable optimizations, since that was the
selling point

– Code synthesis
• Put together parts of object code instructions in relocatable

format

DESIGN: Control Structures

• Control structures control flow in the
program

• Most important statement in FORTRAN:
– Assignment Statement

DESIGN: Control Structures
• Machine Dependence (1st generation)
• In FORTRAN, these were based on

native IBM 704 branch instructions
– “Assembly language for IBM 704”

TRA i,k (transfer indexed)GOTO (n1, n2,…,nm), n

……

TOV kIF ACCUMULATOR OVERFLOW n1, n2

CAS kIF (a) n1, n2, n3

TRA i (transfer indirect)GOTO n, (n1, n2,…,nm)

TRA k (transfer direct)GOTO n

IBM 704 branch operationFORTRAN II statement

Arithmetic IF-statement

• Example of machine dependence
– IF (a) n1, n2, n3
– Evaluate a: branch to

• n1: if -,
• n2: if 0,
• n3: if +

– CAS instruction in IBM 704
• More conventional IF-statement was later

introduced
– IF (X .EQ. A(I)) K = I - 1

Principles of Programming

• The Portability Principle
– Avoid features or facilities that are

dependent on a particular computer or a
small class of computers.

GOTO

• Workhorse of control flow in FORTRAN
• 2-way branch:

IF (condition) GOTO 100
 case for false

GOTO 200

100 case for true

200

• Equivalent to if-then-else in newer languages

Reversing TRUE and FALSE

• To get if-then-else –style if:
IF (.NOT. (condition)) GOTO 100
 case for true

GOTO 200

100 case for false

200

n-way Branching
with Computed GOTO
GOTO (L1, L2, L3, L4), I

10 case 1
 GOTO 100

20 case 2
 GOTO 100

30 case 3
 GOTO 100

40 case 4
 GOTO 100

100

• Transfer control to label Lk if I contains k
• Jump Table

n-way Branching
with Computed GOTO
GOTO (10, 20, 30, 40), I

10 case 1
 GOTO 100

20 case 2
 GOTO 100

30 case 3
 GOTO 100

40 case 4
 GOTO 100

100

• IF and GOTO are selection statements

Loops
• Loops are implemented using combinations

of IF and GOTOs
• Trailing-decision loop:

100 …body of loop…
 IF (loop not done) GOTO 100

• Leading-decision loop:
100 IF (loop done) GOTO 200

 …body of loop…
 GOTO 100
200 …

• Readable?

But wait, there’s more!

• Mid-decision loop:
100 …first half of loop…

 IF (loop done) GOTO 200
 …second half of loop…

 GOTO 100
200 …

Hmmm…

• Very difficult to know what control
structure is intended

• Spaghetti code
• Very powerful
• Must be a principle in here somewhere

Principles of Programming

• The Structure Principle (Dijkstra)
– The static structure of the program should

correspond in a simple way to the dynamic
structure of the corresponding
computations.

• What does this mean?
– Should be able to visualize behavior of

program based on written form

GOTO: A Two-Edged Sword

• Very powerful
– Can be used for good or for evil

• But seriously is GOTO good or bad?
– Good: very flexible, can implement

elaborate control structures
– Bad: hard to know what is intended
– Violates the structure principle

