

 1

1

CS 4100
Block Structured Languages

April 13, 2011
Based on slides by

Istvan Jonyer
Book by

MacLennan

2

Chapter 6:
Implementation of Block-Structure

• Addressing implementation aspects of
block-structured languages (Pascal and
Algol)
– Fortran (and pseudocode) not block

structured
– We’ll focus on Pascal, since most languages

these days are Pascal-like
– Algol is block structured

3

Activation Record

• Represents the state of a procedure

4

Fixed vs Variable

• Program has two major components
– Fixed part

• Code (the program itself)
• Does not change during runtime

– Variable part
• Activation record
• Dynamically created and deleted at runtime
• We’ll focus on this part

 2

5

State of an Activation

• Point of execution (instruction pointer)
– Stored in IP of activation record (and IP register of

processor)
– Usually points to next instruction

• Context of execution (scope/environment)
– Environment pointer (EP)
– Local context

• Local activation record
– Non-local context

• Non-local activation record

6

Activation Records
• Local variables and formal parameters

are contained in the activation record
– Create and delete correspond to entry and

exit
• Context of a statement

– Names declared in current procedure +
– Names declares in surrounding procedures

• For multiple bindings, innermost declaration is
used (if name not found in current activation
record, look to outer A/Rs successively)

7

Static Link

• How to keep track of outer scopes? (p214)

– Static link points to outer activation record
– Each context (A/R) has static link to outer scope
– Static links form a chain all the way to top level

(global scope, and beyond to OS)

– Static chain reflects the static structure of the
program

• The way procedures are nested
• Ends at global scope

8

program a(…);
var N: integer;
procedure b(sum: real);

var i: integer;
avg: real;
Data: array[1..10] of real;

procedure c(val: real);
begin

writeln (Data[i]);
end; // c

begin // b
...

end; // b
begin // a

...
end; // a

 3

9

Contour Diagram of Static
Structure of Previous Program

N

avg
i

Data

sum

val

(c)

(b)

(a)

EP

10

Pointers

• EP points to active local context
• SP points to register of active context
• IP points to next instruction
• SL outer activation record

– Environment of declaration
– Keeps track of outer scopes

• DL (coming soon) points to callers A/R
– Talked about this in Fortran

11

Activation Record for Procedures

• Activation record of (c)

• Activation record of (b)

• Activation record of (a)

…
SL
N
SL

sum
i

avg
Data
SL
val

SP

EP

12

Variable Addressing
• Name lookup is done at compile time

– Names are not actually looked up at runtime
– Names are bound to addresses in activation

record
• We need two addresses for accessing a

variable
– How far we have to follow the static link

• Where the variable is defined
– Offset of variable in activation record

 4

13

Terminology
• Static nesting level

– How deep the scope is where variable is
defined (from global scope)

– Number of contour lines surrounding
declaration or use

• Static distance
– Distance between the variable’s

declaration and use
• Offset

– Variables position inside activation record
14

Fetching a Variable

• Notation
– M[i]: memory at address i
– EP: environment pointer (how to get to A/R)
– offset(v): relative offset of variable v in activation

record (how to find in A/R)
– reg.X: processor register (EP,IP,SP)

• General case (v is local)
– fetch M[reg.EP + offset(v)]

15

Examples
• Get variable sum (with offset 1) at static

distance of 1
– ARP: activation record pointer
ARP := M[reg.EP];
fetch M[ARP + 1];

• Get variable N (with offset 1) at static distance
of 2
ARP := M[reg.EP];
ARP := M[ARP];
fetch M[ARP + 1];

16

Activation Record for Procedures

• Activation record of (c)

• Activation record of (b)

• Activation record of (a)

…
SL
N
SL

sum
i

avg
Data
SL
val

SP

EP

 5

17

Dynamic Link

• How is dynamic link different from static link?
– Can we do with just one?

• Both are needed for static scoping
• Dynamic link is enough for dynamic scoping

• Static link
– Points to environment of declaration

• Dynamic link
– Points to caller

• Can restore caller’s state on exit

18

Dynamic vs Static Link

Dynamic chain

B()
Q()
begin

P()
end
P()
begin

Q()
end

begin
 P()

end

Q
P

Q
P

…
B

P
Q

Static chain

19

Procedure Activation

• Three steps
– Save state of caller

• In local activation record
– Create activation record of callee

• Transmit parameters to callee
• Establish dynamic link from caller

– Enter callee
• At its first instruction

20

Saving the Caller’s State
• Saving address where caller must resume

after returning from call
• Saving locals and non-locals

– No action is required
– Locals are already stored in AR
– Access to non-locals is already established (SL)

• Saving processor registers
– Registers must be saved in AR
– Platform-specific (not discussed)
– Not visible to programmer

 6

21

Creating Callee’s AR
• Callee’s AR has following components

– PAR: parameters
• Parameters are placed here by caller
• M[callee’s AR].PAR[1] := evaluation of parameter 1;

– IP: resumption address
• Not used until making procedure call

– SL: static link
• Set to environment of definition
• Computed from static nesting levels of procedures
• M[callee’s AR].SL := reg.EP (if defined in current scope)

– DL: dynamic link
• Set to caller’s AR (EP register)
• M[callee’s AR].DL := reg.EP

22

Final Steps
• Install callee’s AR as current activation

record
reg.EP := callee’s AR;

• Include callee’s AR in stack “officially”
reg.SP := reg.SP + size(callee’s AR);
goto entry(callee);

• Both entry point and AR size are known
at compile time
– Goto = reg.IP := entry(callee)

23

Procedure Exit
• We have to effectively reverse the entry

procedure
– Delete callee’s activation record

• Subtract size of AR from stack
– reg.SP := reg.SP – size(callee’s AR)

– Restore the state of the caller
• Reinstalling the caller’s context

– reg.EP := M[reg.EP].DL;

– Resume execution of caller
• reg.IP := M[reg.EP].IP (goto M[reg.EP].IP)

24

Non-Local GOTOs

• Local GOTO
– Simple machine jump to address

• Non-local GOTO
– Requires restoration of environment
– Must manipulate runtime stack

• Analogous to returning from a procedure call

 7

25

Example
B()

Q()
P()
begin
…
goto 1;

end
begin

P()
…

end
begin

Q()
1: …
end

26

Implementation
• How do we find the scope for the label?

– Static nesting level is kept in symbol table at compile time
– Static difference sd can be computed and found runtime

• Steps involved:
– Scan down static chain sd times

• sd times: reg.EP := M[reg.EP].SL
– Remove ARs from top of stack

• reg.SP := reg.SP + size(AR of label)
– Transfer execution to point of label (constant)

• goto address(label)

27

Displays
• Traversing static chains is proportional to

length of chain
– Would be nice if it was constant

• Solution
– Store the address of activation record for each

environment (not procedure call!) in array
– This array is called the “display” D
– Accessing static nesting levels is easy

• D[snl]
– Accessing variables is now only two steps, always!

• fetch M[D[snl] + offset(variable)]

28

Static Chains vs. Displays

52Procedure return

6sd+3Procedure call

2sd+1Non-local variable

21Local variable

DisplayStatic ChainOperation

•SC values are estimates

•Displays
o Better for variables

o Worse for procedure calls

 8

29

Blocks
• Pascal does not have blocks…
• But Algol, C, Ada and many others do
• Blocks require activation records

– Thus, entering and exiting a block is
analogous with calling and returning from a
procedure

– Can they be implemented in the same
way?
• Yes!

30

Block vs. Procedure
• Some efficiency hacks are possible with

blocks
– Blocks are always called from the same

place! …and returns to the same place!
• No need to save IP (resume address) of caller
• No need to save processor registers
• Environment is always the same

– Environment of definition = Surrounding block
– Static and dynamic links are the same

– No parameters
• No need to evaluate and copy parameters

31

Improvements

• Simplified structure
– LV: local variables

• Block can have local variables
– (vs. compound statements)

– IP: resumption address
• Block may call procedure

– SL: static link
• Remove dynamic link, since they are the same

32

Entry-Exit

• Entry:
M[reg.SP].SL := reg.EP;

reg.EP := reg.SP;

reg.SP := reg.SP + size(block AR)

• Exit
reg.SP := reg.SP - size(block AR)

reg.EP := M[reg.EP].SL;

