Sebesta: Concepts of
Programming Languages
Chapter 3

Describing Syntax
and Semantics

CS 4100
March 2, 2011

Some Chapter 3 Topics

Introduction
The General Problem of Describing Syntax
Formal Methods of Describing Syntax

Introduction

* Syntax: the form or structure of the
expressions, statements, and program units

* Semantics: the meaning of the expressions,
statements, and program units

* Syntax and semantics provide a language’s
definition
— Users of a language definition
* Other language designers
* Implementers
* Programmers (the users of the language)

The General Problem of Describing Syntax:
Terminology

A sentence is a string of characters over some
alphabet

A language is a set of sentences
A lexeme is the lowest level syntactic unit of a
language (e.g., *, sum, begin)

A token is a category of lexemes (e.g.,
identifier)

Formal Definition of Languages

* Recognizers

— A recognition device reads input strings of the
language and decides whether the input strings
belong to the language

— Example: syntax analysis part of a compiler
* Generators
— A device that generates sentences of a language

— One can determine if the syntax of a particular
sentence is correct by comparing it to the
structure of the generator

Formal Methods of Describing
Syntax
¢ Backus-Naur Form and Context-Free
Grammars

— Most widely known method for describing
programming language syntax

* Extended BNF
— Improves readability and writability of BNF
* Grammars and Recognizers

BNF and Context-Free Grammars

Context-Free Grammars

— Developed by Noam Chomsky in the mid-1950s

— Language generators, meant to describe the
syntax of natural languages

— Define a class of languages called context-free
languages

Chomsky Hierarchy

Type-0 Recursively enumerable
— Turing machine

— any string of non-terminals ::= any other string of non-
terminals and terminals

Type-1 Context-sensitive
— Linear-bounded non-deterministic Turing machine

— any string of non-terminals ::= any other string of non-
terminals and terminals

Type-2 Context-free

— Non-deterministic pushdown automaton

— <nt> ::= any string of terminal and non-terminal symbols
Type-3 Regular

— Finite state automaton

— <nt> =k <nt>or <nt> =k

Backus-Naur Form (BNF)

* Backus-Naur Form (1959)
— Invented by John Backus to describe Algol 58
— BNF is equivalent to context-free grammars

— BNF is a metalanguage used to describe
another language

— In BNF, abstractions are used to represent
classes of syntactic structures--they act like
syntactic variables (also called nonterminal
symbols)

BNF Fundamentals

* Non-terminals: BNF abstractions
* Terminals: lexemes and tokens
* Grammar: a collection of rules
— Examples of BNF rules:
<ident list> — identifier | identifier, <ident list>

<if stmt> — if <logic_expr> then <stmt>

BNF Rules

* Arule has a left-hand side (LHS) and a right-
hand side (RHS), and consists of terminal
and nonterminal symbols

e A grammar is a finite nonempty set of rules

* An abstraction (or nonterminal symbol) can
have more than one RHS

<stmt> — <single_stmt>

| begin <stmt_list> end

Describing Lists

* Syntactic lists are described using recursion
<ident_list> — ident
| ident, <ident list>
* A derivation is a repeated application of
rules, starting with the start symbol and
ending with a sentence (all terminal
symbols)

An Example Grammar

<program> — <stmts>

<stmts> — <stmt> | <stmt> ; <stmts>

<stmt> — <var> = <expr>

<expr> — <term> + <term> | <term> - <term>
<term> — <var> | const

<var> - a | b | ¢ | d

Il rights reserved

An Example Derivation

<program> => <stmts>

=> <stmt>

=> <var> = <expr>

=> a = <expr>
= <term> + <term>
= <var> + <term>
b + <term>

a
a
a
a

= b + const

; <stmts>

term> + <term> | <term> - <term>

> | const

Derivation

Every string of symbols in the derivation is a
sentential form

A sentence is a sentential form that has only
terminal symbols

A leftmost derivation is one in which the
leftmost nonterminal in each sentential form
is the one that is expanded

A derivation may be neither leftmost nor
rightmost

Parse Tree

* A hierarchical representation of a derivation

<program>
\
<stmts>
|
<stmt>
I
<var> = <expr>
| PR
a <term> + <term>

<var> const
|

b

Il rights reserved

Ambiguity in Grammars

* A grammar is ambiguous if and only if it
generates a sentential form that has two or
more distinct parse trees

An Ambiguous Expression Grammar

<expr> — <expr> <op> <expr> | const
<op> — / | -
<expr> <expr>
<expr> <op> <expr> <expr> <op> <expr>
<expr> <op> <expr> <expr> <op> <expr>
const - const /| const const - const /| const

An Unambiguous Expression Grammar

* If we use the parse tree to indicate
precedence levels of the operators, we
cannot have ambiguity

<expr> — <expr> - <term> | <term>
<term> — <term> / const| const
<expr>
<expr> - <term>
| P

<term> <term> |/ const
|

const const

Associativity of Operators

* Operator associativity can also be indicated by a grammar

<expr> -> <expr> + <expr> | const (ambiguous)
<expr> -> <expr> + const | const (unambiguous)
<expr>
<expr> + const

/N

<expr> + const

const

Extended BNF

* Optional parts are placed in brackets []
<proc_call> -> ident [(<expr_list>)]

* Alternative parts of RHSs are placed inside
parentheses and separated via vertical bars
<term> — <term> (+|-) const

* Repetitions (0 or more) are placed inside
braces { }
<ident> — letter {letter|digit}

Il right

* BNF

<expr>

<term>

* EBNF

<expr>
<term>

Il rights reserved

BNF and EBNF

— <expr> + <term>
| <expr> - <term>
| <term>
— <term> * <factor>
| <term> / <factor>
| <factor>

— <term> {(+ | -) <term>}
— <factor> {(* | /) <factor>}

