

 1

1

Algol Part 3

CS4100
March 7, 2011

Based on slides by Istvan Jonyer

2

Contour Diagrams

• See Figure 3.3, page 102
• Do Exercise 3-1, page 104

3

Dynamic vs Static Scoping

• Static scoping
– Procedure is called in the context of its declaration

• Environment of Definition
– Scope structure is determined at compile-time
– Algol

• Dynamic scoping
– Procedure is called in the context of its caller

• Environment of Caller
– Scope structure is determined at run-time
– LISP

4

Example
• Draw static contour diagram
• Draw dynamic contour diagram for both calls to P
a:begin
 integer m outer m

 procedure P
m := 1;

b:begin
 integer m; inner m

P inner call
 end
 P outer call

 end

 2

5

Dynamic Scopes and Functions
• Dynamic scoping applies to all names (not just

variables)
• Advantage:

– We can write a general procedure that makes use of
procedures in the caller’s environment

• No need to have all names defined in static context

• Disadvantage:
– If caller’s environment provides a different function than what

is intended to be used (see example page 109)
• Programmer has to think about envt when writing calls

6

Which one is better?
• General rule:

– What is natural to humans will cause less problems in the
long run

– If humans can understand static scoping better, than it will
result in higher quality programs in the long run

• Dynamic scoping is confusing
– Generally rejected (not used in new languages)
– Static scoping agrees more with the program’s dynamic

behavior

7

Blocks Permit
Efficient Storage Management
• Fortran used EQUIVALENCE

– Not safe, since there is no guarantee of exclusive use of
memory

• Blocks permit reuse of memory
a:begin integer m, n;
b:begin real array X[1:100], real y;
...
end

...
c:begin integer k; real array M[0:50];
...
end

end 8

Run-Time Stacks
• Variables in blocks b and c are never used at the same

time
• When exiting b, its variables may be discarded
• Notice: Block entered last will be exited first

– LIFO (last-in first-out) order
– Can use a stack to organize activation records
– When block is entered, its AR is pushed onto stack
– When block is exited, its AR is popped off stack
– Assumption: No local variables are initialized

 3

9

Example

• From previous program

…
m
n

X

y

…
m
n

…
m
n

k

M

…
m
n

…
m
n

enter (a) exit (a)enter (b) exit (b) enter (c) exit (c)

10

Responsible Design
• Algol designers did not include

EQUIVALENCE
– Programmers might have asked for it…
– Instead, they looked at the root of the

problem
– “Don’t ask what they want, ask how the

problem arises”
– Language designers are responsible for

the features in the language, not
programmers

11

Principles of Programming

• The Responsible Design Principle
– Do not ask programmers what they want,

find out what they need.

12

Data Structures

• Primitives
– Mathematical scalars, like in Fortran
– integer, real, Boolean
– complex and double not included

• Double: platform dependent
– Not portable
– Why? Because we need to know the size of a

word to know how big double is.
– Alternate approaches:

• specify precision
• Let compiler pick precision

 4

13

Why no complex?

• Not primitive
– Can be constructed using other types easily (2

reals)
• Is it easy to use reals for complex?

– Yes, but inconvenient
– Need supporting operations

• ComplexAdd(x, y, z), etc.
• Designers’ choice:

– Is it worthwhile to add the complexity/overhead of
another type? (conversions, coercion, operator
overload, etc.)

– Will they get enough use?
14

Strings
• Yet another data structure that needs full support

(operation, etc.)
• Algol designers included strings as second-class

citizens
– string type is only allowed for formal parameters
– String literals can only be actual parameters
– No operations
– Strings can only be passed around in procedures
– Cannot actually do anything with them

• What’s the point???
– String will end up getting passed to output procedure written

in a lower (machine) language that can handle it

15

Zero-One-Infinity
• Programmers should not be required to

remember arbitrary constants
• Fortran examples

– Identifiers have max. 6 characters
– There are at most 19 continuation cards
– Arrays can have at most 3 dimensions

• Regularity in Algol requires small number of
exceptions
– Gives rise to Zero-One-Infinity principle
– E.g.: Identifier names should be either 0, 1 or

unlimited length. (0 & 1 don’t make much sense)
16

Principles of Programming

• The Zero-One-Infinity Principle
– The only reasonable numbers in

programming language design are zero,
one and infinity.

 5

17

Arrays are Generalized
• Arrays can have any number of dimensions
• Lower bound can be number other than 1

– More intuitive, and less error prone than fixed lower bound
• Arrays are dynamic

– Array bounds can be given as expressions, which allows
recomputation every time the block is entered

– Array size is set until block is exited
• (Fortran had fixed array sizes.)

18

Strong Typing
• Strong typed language

– Prevents programmer to perform meaningless operations on
data

– Not to be confused with legitimate type conversions (integer
+ real (coercion))

• Fortran
– Weakly typed
– Permits adding to a Hollerith constant, etc.
– Equivalence allows setting up the same memory for different

types
• Security and maintenance problem
• Intentional type violation is not portable

• Exception: System programming (C)
– Have to treat memory cells as raw storage without regard to

type

19

Control Structures

• Primitive statements are similar to
Fortran’s
– Assignment
– Control flow
– No input/output

20

Controls are Generalized: if

• Fortran had many restrictions
– if (exp) simple statement

• Statement restricted to GOTO, CALL, or
assignment

• Algol removes restrictions
– All statements are allowed (even ‘if’ in body

of ‘if’)
– ‘else’ added to address false condition

 6

21

Controls are Generalized: for
• Algol’s for is more general than Fortran’s do

for i := 1 step 1 until N do
sum := sum + Data[i]

– Leading-decision loop:
for NewGuess := Improve(OldGuess)
while abs(NewGuess – OldGuess) > 0.01
do OldGuess := NewGuess

– Same as while loop in newer languages:
NewGuess := Improve(OldGuess);
while abs(NewGuess – OldGuess) > 0.01 do
 begin

OldGuess := NewGuess;
NewGuess := Improve(OldGuess);

end
22

Another for loop
 for i := 3, 7,
 11 step 1 until 16,
 i ÷ 2 while i >= 1,
 2 step i until 32 do
 print(i);

3 7 11 12 13 14 15 16 8 4 2 1 2 4 8 16 32

23

Goal: Regularity

• Algol was designed around regularity
– “Anything that you think you ought to be

able to do, you will be able to do.”
– Elaboration on zero-one-infinity principle

• Remove inexplicable exceptions from the
language

24

begin … end
• Algol-58:

– All control structures should be allowed to have
any number of statements

– All control statements were considered an opening
bracket, with corresponding closing bracket

• if … endif
• Algol-60

– Largely due to the BNF notation, they realized that
one bracketing mechanism is enough for all

– Defined begin-end bracketing
• Define compound statements
• Makes one statement out of a group of statements
• Allowed anywhere a single statement is expected

 7

25

Example
for i := 1 step 1 until N do

sum := sum + Data[i]

for i := 1 step 1 until N do
begin

sum := sum + Data[i];
Print Real (sum)

end

26

begin-end Issues

• Easy to omit begin-end
– Especially when single statement is used

first, then another is added
– Especially the case with well-indented code

for i := 1 step 1 until N do
sum := sum + Data[i];
Print Real (sum)

– This is a maintenance problem
– Good convention: always use bracketing

27

begin-end Has Double Duty
• begin-end are used for

– Compound statements
• Collection of statements is handled as one statement

– Blocks
• Define nested scopes
• Include definitions, in addition to statements

• Any difference?
– Compound statements do not need an activation record
– Compiler must determine whether begin-end has

declarations, and generate block-entry code if so

28

Structured Programming
• Compound statements drastically reduce the number

of GOTOs required
– In Fortran, GOTO was the workhorse for control
– Example: if-then-else

• GOTO-less programs were easier to read
– This led people to experiment with abolishing GOTO
– Dijkstra: “Go To Statement Considered Harmful”

• Difficulty in reading programs came from conceptual gap
between static and dynamic structure of program

• i.e.: static layout on paper, versus runtime operation
• Result: languages still have GOTOs, but we don’t use them

 8

29

Principles of Programming

• The Structure Principle
– The static structure of the program should

correspond in a simple way to the dynamic
structure of corresponding computations.

