

 1

1

Algol Part 2

CS4100
March 4, 2011

Based on slides by Istvan Jonyer

2

Algol’s Objectives

• The language should be very close to
mathematical notation

• Should be useful in publications to
describe algorithms

• Mechanically translatable to machine
code

3

Structural Organization
• Hierarchically structured language

– Nesting is introduced (Fortran did not use nesting)
– Control structures can also be nested

• One can be made the body of the other
if N > 0 then
for i := 1 step 1 until N do

sum := sum + Data[i]

• Advantage: decreases the number of GOTOs required

• Reserved words

4

Constructs
• Declarative or Imperative

– (like in FORTRAN)
• Variable declarations

– Types: integer, real, Boolean
integer i, j, k

– Lower bounds of arrays need not be 1
real array Data[-50:50]

– Switch, like FORTRAN’s computed GOTO
• Subprogram declarations

– Keyword: procedure and
– Procedures can be typed (functions) and untyped

real procedure dist(x1, y1, x2, y2);
real x1, y1, x2, y2;
dist = sqrt((x1 – x2)^2 + (y1 – y2)^2)

 2

5

Imperative Constructs

• Computational
– Assignment: “variable := expression”
– Operators:

• Arithmetic: +, -, *, etc.
• Relational: =, <, >, ≥, etc.
• Logic: ∧, ∨, ¬, etc.

– Why is assignment ‘:=’ and not ‘=’?
• Assignment is different from definition and

comparison
• I = I + 1 ; I := I + 1

6

Imperative Constructs

• Control-flow
– All imperative constructs alter flow of

control (except assignment)
– Has if-then-else
– for-loop replaces do-loop

• No input/output constructs
– I/O was left to be handled by platform-

dependent library calls

7

Name Structures
• Algol-60 introduces the compound statement

– Where 1 statement is allowed, more can be used,
using begin-end
for i := 1 step 1 until N do

sum := sum + Data[i]

for i := 1 step 1 until N do
begin

sum := sum + Data[i];
Print Real (sum)

end

– Also, the body of a procedure is a single statement
8

Syntax - Program
• <program> ::= <block> | <compound statement>

• <block> ::= <unlabelled block> | <label>: <block>
• <compound statement> ::= <unlabelled compound> |

<label>: <compound statement>

• <unlabelled compound> ::=
 begin <compound tail>
• <unlabelled block> ::=
 <block head> ; <compound tail>

 3

9

Syntax - Block

• <block> ::= <unlabelled block> |
 <label>: <block>
• <unlabelled block> ::=
 <block head> ; <compound tail>
• <block head> ::= begin <declaration> |
 <block head> ; <declaration>
• <compound tail> ::= <statement> end |
 <statement> ; <compound tail>

10

Syntax - Statement
• <compound statement> ::= <unlabelled compound> |
 <label>: <compound statement>
• <unlabelled compound> ::= begin <compound tail>
• <compound tail> ::= <statement> end | <statement> ; <compound tail>
• <statement> ::= <unconditional statement> | <conditional statement> |
 <for statement>
• <unconditional statement> ::= <basic statement> |
 <compound statement> | <block>
• <basic statement> ::= <unlabelled basic statement> |
 <label>: <basic statement>
• <unlabelled basic statement> ::= <assignment statement> |
 <go to statement> | <dummy statement> |
 <procedure statement>

11

Name Binding
• Fortran binds a variable to a single memory

location statically
• Algol-60 included the results of research done

on name structures, which were problematic
in Fortran
– Sharing of data between subprograms
– Parameter passing modes
– Return values
– Dynamic arrays

• Result of research: block structure

12

Blocks Define Nested Scopes
• Fortran

– Had local and global declarations only
– Had to redeclare using COMMON to share

• Algol-60
– Introduces blocks

begin
declarations;
statements

end

– Compound statements do not have ‘declarations’.
– All declarations are visible to all statements in the block
– Since statements can be blocks, scopes can be nested

 4

13

Why do we need scopes?

• Reduce the context programmers have to keep in
mind

• Make understanding and maintenance of program
easier

• Scopes reduce visibility of names
– Declare variable only where needed and used

• Nested blocks inherit names from outside
– It would be very inconvenient if they did not

14

“COMMON” with Blocks

• The error-prone COMMON in Fortran can be
implemented in a much better way using
blocks
begin
integer array Name, Loc, Type[1:100];
procedure Lookup (n);

. . . Lookup procedure . . .
procedure Var (n, l, t);

. . . Var procedure . . .
procedure Array1 (n, l, t, dim1);

. . . Array1 procedure . . .
end

15

Too Much Access

• Blocks provide “indiscriminate access”
– Since functions must be accessible to

users,
– and data structures must be accessible to

functions
–  Data is also accessible to users

• Violates information hiding principle

16

Contour Diagrams

• Inner blocks implicitly inherit access to all variable in
immediately surrounding block

• Names declared in a block are local to the block
• Names declared in surrounding blocks are nonlocal
• Names declared in outermost block are global

 5

17

Contour Diagrams

• See Figure 3.3, page 102
• Do Exercise 3-1, page 104

