Revised Report on the Algorithmic Language

ALGOL 60

Prrur Nauwr (Editor)

J.o W, Backus
I, 1.. Bavknr
J. GREEN

o INarz
Jo MeCanruy
A Prruis

H. RurmsHauskr
I, SaMBLsoN
B. Vauvquois

JoH WeasTeiN
Ao vaN WoNGaarpeN
AL Wooonaer

Dedicaled to the Memory of Wirotase TorANSKT

SUMMARY

The report gives a complete delining deseription of the
nternational algorithmic language ALGOL 60. This is
1 language suitable for expressing a large class of nu-
nerical processes in a form sufficiently concise for direct
wtomatic translation into the language of programmed
wtomatic computers,

“The introduction contains an account of the preparatory
work Jeading up to the final conference, where the language
vas defined. In addition, the notions, rcferctice language,
ablication language arid hardware representations are
wplained.

In the first chapter, a survey of the basic coustituents
and features of the language is given, and the formal
notation, by which the syntactic structure is defined, is
explained,.

The second chapter lists all the basic symbols, and the
syntactic units known as identifiers, numbers and strings
are defined. Further, some important notions such as
quantity and value are defined.

The third chapter explains the rules for forming ex-
pressions and the meaning of these expressions. Three
different types of expressions exist: arithmetic, Boolean
(logical) and designational.

The fourth chapter describes the operational units of
the language, known as statements. The basic statements
are: assignment statements (evaluation of a formula),
go to statements (explicit break of the sequence of ex-
ecution of statements), dummy statements, and pro-
cedure statements (call for execution of a closed process,
defined by a procedure declaration). The formation of
more complex structures, having statement character, is
explained. These include: conditional statements, for
statements, compound statements, and blocks.

In the fifth chapter, the units known as declarations,
serving for defining permanent properties of the units
entering into a process described in the language, are
defined.

The report ends with two detailed examples of the use
of the language and an alphabetic index of definitions.

CONTIENTS

INTRODUCTION
[. NSrrrctvre or THE LaNauaGu
1.1. Formalism for syntactic deseription
)
Basic Concerrs.
2.1. Letters
2.2. Digits. Logieal values.
2.3. Delimiters
Identifiers
Numbers
Strings
.7. Quantities, kinds and scopes
2.8. Values and types
3. EXPRESSIONS
3.1. Vauriables
3.2. Function designators
3.3. Arithmetic expressions
3.4. Boolean expressions
3.5. Designationui expressions
4. STATEMENTS
4.1. Compound statements and blocks
4.2. Assignment statements
4.3. Go to statements
4.4. Dummy statements
4.5. Conditional statements
4.6. For statements
4.7. Procedure statements
5. DECLARATIONS
5.1. Type declarations
5.2. Array declarations
5.3. Switch declarntions
5.4. Procedure declarations
EXAMPLES OF PROCEDURE DECLARATIONS
ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS AND
SyntacTic UniTs

Ga b

Communications of the ACM

2. Bastc SymBowus, IpeNTivigRs, NUMBERS, AND STRINGS.

REVISED ALGOL 60

INTRODUCTION

Background

After the publication of a preliminary report on the
algorithmic language ALGoL,!* as prepared at a conference
in Zurich in 1958, much interest in the ALGOL language
developed.

As a result of an informal meeting held at Mainz in
November 1958, about forty interested persons from
several European countries held an ALGOL implementa-
tion conference in Copenhagen in February 1959. A
""hardware group' was formed for working cooperatively
right down to the level of the paper tape code. This
conference also led to the publication by Regnecentralen,
Copenhagen, of an ALGOL Bulletin, edited by Peter
Naur, which served as a forum for further discussion.
During the June 1959 ICII' Conference in Paris several
meetings, both formal and informal ones, were held.
These meetings revealed some misunderstandings as
to the intent, of the group which was primarily responsible
for the formulation of the language, but at the same time
made it clear that there exists a wide appreciation of the
eflort involved. As a result of the discussions it was de-
cided to hold an international meeting in January 1960
for improving the Ancon language and preparing a final
report. At a BFuropean Awncon Conference in Paris in
November 1959 which was attended by about fifty people,
seven Isuropean representatives were selected to attend
the January 1960 Conference, and they represent the
following organizatioirs : Association Francaise de Caleul,
British Computer Society, Gesellsehaft fiir Angewandte
Mathematik und Mechanik, arid Nederlands Reken-
machine Genootschap. The seven representatives held a
final preparatory meeting at Maiuz m December 1959,

Meanwhile, in the United States, anvone who wished to
suggest changes or correetions to ALGoL was requested to
send his comments to the Communications of the ACA,
where they were published. These comments then became
the basis of consideration lor. changes in the AnLcoL lan-
guage. Both the Snare and USE organizations estab-
lished Avncon working groups. and both orgamzations
were represented on the ACM Committee on Program-
ming Languages. The ACM Commitice met in Washing-
ton in November 1959 arid considered all comments on
Avcov that had been sent to the ACM Commaunications.
Also, seven representatives were sclected to attend the
January 1960 mternational These seven
representatives held a final preparatory meeting ity Boston

conference.
it December 1959,

January 1960 Conference

The thirteen representatives,® from Denmark, ngland,
Franee, Germany, Holland, Switzerland, and the United
States, conferred in Parts from January 11 10 16, 1960,

Prior to this meeting o completely new draft report was
worked out from the prehminary report and the recom-
mendations of the preparatory meetings by Peter Naur
2 OV

Communications of the

and the conference adopted this new form as the basis for
its report. The Conference then proceeded to work for
agreement on each item of the report. The present report
represents the union of the Committee's concepts and the
intersection of its agreements.

April 1962 Conference [Edited by M. Woodger]

A meeting of some of the authors of ALGoL 60 was held
on April 2-3, 1962 in Rome, Italy, through the facilities
and courtesy of the International Computation Centre.
The following were present:

Authors Advisers Observer
F. L. Bauer M. Paul W. L. van der Poel
J. Green R. Franciotti (Chairman, IFIP
C. Katz P. Z. Ingerman TC 2.1 Working
R. Kogon Group ALGOL)
(representingJ. W.
Backus)
P. Naur
K. Samelson G. Seegmiiller

J. H. Wegstein R. E. Utman

A. van Wijngaarden
M. Woodger P. Landin

The purpose of the meeting was to correct known
errors in, attempt, to eliminate apparent ambiguities in,
and otherwise clarify the ArgoL 60 Report. Ixtensions
to the language were not considered at the meeting.
Various proposals for correction and clarification that
were submitted by interested parties in response to the
Questionnaire in ALGOL Bulleizn No. 14 were used as a
guide.

This report * constitutes a supplement to the ALcow 6U
Report. which should resolve a number of difliculties
therein. Not all of the questions raised concerning the
original report could be resolved. Rather than risk hastily
drawn conclusions on a number of subtle points, which
might, create new ambiguities, the committec decided to
report only those points which they unanimously felt
could be stated in clear and unambiguous {ashion.

Questions concerned with the following areas are left
for further consideration by Working Group 2.1 of 1FID,
n1 the expectation that current work on advanced pro-

* [Entror’s NoTE. The present edition follows the test which
was approved by the Council of IFIP. Although it is not clear from
the Introduction, the present version is the original report of the
January 1960 conference modified according to the agreements
reached during the April 1962 conference. Thus the report men-
tioned here 1s incorporated in the present version. The modifica
tions touch the original report in the following sections: Changes
of text: 1 with footnote; 2.1 footnote; 2.3; 2.7, 3.3.3: 3.34.2; 4.1.3
423 4247 4545 47.3; 47305 473.3; 4751 47545 470
5;5.3.3:5.3.5:54.3:544;54.5. Changes of svntax: 3.4.1:4.1.1.
4.2.1;4.5.1.]

U Preliminary report—International
Comm. ACM 1,12 (195%), 8.

2 Report on the Algorithmie Language ALGOL by the ACM

Algebraie Language.

Committee on Programming Languages and the GAMM Com-

nuttee on Programming. edited by A J. Perhis and W Sumelson
Math . 1 (1954, 4160

SWilliam Turanski of the Ameriean group was Killed by oan
automobile just proor o the Jaanry 1960 Conference

N

I

o =

w

o aming languages will lead to better resolution:

PooNide effects of Tunetions
CThe eall by name coneept
Cown: statie or dynamie
For statement: statie or dynamie
~ Conflict between specification and declaration
he authors of the Ancorn 60 Report present at the
Rome Conference, being aware of the formation of a
Working Group on Avncon by 1FIP, accepted that any
coilertive responsibility which they might have with
re-pect to the development, specification and refinement
of the ALcot language will f'rom now on be transferred to
that body.

This report has been reviewed by IFIP TC 2 on Pro-
gramming Languages in August 1962 and has been ap-
proved by the Council of the [nternational Federation
for Information Processing.

As with the preliminary Avcou report, three different
levels of language are reeognized, namely a Reference
Language. & Publication Language and several Hardware
Representations,

2

}
5
1

Rererexce Lavcraas

1. It is the working language of the committec.

2. It is the defining language.

3. The characters are determined by ease of mutual
understanding and not by any computer Hmitations,

Rcoders notation, or pure mathematical notation,

4. It is the basic reference and guide for compiler
builders.

5. It is the guide for all hardware representations.

6. It is the guide for transliterating from publication
language to any locally appropriate hardware representa-
tions.

DESCRIPTION OF THE

. Structure of the Language

As stated in the introduction, the algorithmic language
as three different kinds of representations —reference,
ardware, and publication—and the development de-
ribed in the sequel is in terms of the reference repre-
mtation. This means that all objects defined within the
nguage are represented by a given set of symbols—and
is only in the choice of symbols that the other two
:Presentations may differ. Structure and content must
& the same for all representations.

The purpose of the algorithmic language i to describe
dmputational processes. The basic concept used for the

escription of calculating rules is the well-known arith-
etic expression containing as constituents numbers, vari-
bles, and functions. From such expressions are com-
unded, by applying rules of arithmetic composition,

REVISED ALGOL 60

7. The main publications of the Arcon language itself

will use the reference representation,

PrpLicarion LaNaraae
I, The publication language admits variations of the
reference language according to usage of printing and hand-
writing (e.g., subseripts, spaces, exponents, Greek letters).
20 1t i used for stating and conumunteating proeesses.
3. The be different in
dilferent univoenl covrespondence with

characters to used may be

but
reference representation

countries,

must be secured,

Harpwank REPRESENTATIONS

. Iach one of these is a condensation of the reference
language enforeed by the limited number of characters on
standard input equipment.

2. Iach one of these uses the character set of o particu-
lar computer and is the language accepted by a transtator
for that computer.

3. Itach one of these must be accompanied by a special
set of rules for transliterating from Publication or R()fl(\r—
enee language.

For transliteration between the reference language and
a language suitable for publications, among others, the
following rules are recommended.

Reference Language Publication Language
the

the

the line between

and

subseript bracket | | Lowering of

hrickets removal of
braekets
Ixponentiation 7 Raising of the exponent.
Parentheses () Any form of parentheses, brackets,
braces
Raising of the ten and of the follow-
ing integral number, inserting of

the intended multiplication sign

Basis of ten o

REFERENCE LANGUAGE

Wus sich {iberhnupt sagen lhsst, sst
sich klar sagen; und wovon man nicht
reden kann, darfiber muss man schweigen.
Lopwia WITTGENSTEIN.
self-contained units of the language—explicit formulac
—called assignment statements.

To show the flow of computational processes, certain
nonarithmetic statements and statement clauses are
added which may describe, e.g., alternatives, or iterative
repetitions of computing statements. Since it is necessary
for the function of these statements that one statement
refer to another, statements may be provided with labels.
A sequence of statements may be enclosed between the
statement brackets begin and end to form a compound
statement.

Statements are supported by declarations which are not
themselves computing instructions but inform the trans-
lator of the existence and certain properties of objects
appearing in statements, such as the class of numbers
taken on as values by a variable, the dimension of an

Communications of the ACM 3

REVISED ALGOL 60

array of numbers, or even the set of rules defining a func-
tion. A sequence of declarations followed by a sequence of
statements and enclosed between begin and end con-
stitutes a block. Every declaration appears in a block in
this way and is valid only for that block.

A program is a block or compound statement which is
not contained within another statement and which makes
no use of other statements not contained within it.

In the sequel the syntax and semantics of the language
will be given.*

1.1. FORMALISM FOR SYNTACTIC DESCRIPTION
The syntax will be described with the aid of metalin-
guistic formulae.® Their interpretation is best explained
by an example
ab) = ([(ab) (| {abX(d)

Sequences of characters enclosed in the brackets () repre-
sent metalinguistic variables whose values are sequences
of symbols. The marks ::= and | (the latter with the
meaning of or) are metaliriguistic connectives. Any mark
in a formula, which is not, a variable or a connective,
denotes itself (or the class of marks which are similar to it).
Juxtaposition of marks and/or variables in a formula
signifies juxtaposition o the sequences denoted. Thus the
formula above gives a recursive rule for the formation of
values of the variable (ah). It indicates that (ab) may
have the value (or [or that given some legitimate value
of (ab), another may br formed by following it with the
character (or by following it. with some value of the vari-
able (d). If the values of (d) are the decimal digits, some
values of (ab) are:

POy 37 (

(12345¢

(((

|86
In order to facilitate the study, the svmbols used for
distinguishing the metalinguistic variables (i.e. the sc-
quences of characters appearing within the brackets ()
as ab in the above example) have been chosen to be words
describing approximately the nature of the corresponding
variable. Where words which have appeared in this manner
arc used elsewhere in the text they will refer to the corre-
sponding svntactic defimtion. In addition senic formulae
have been given in more than one place,

Definition:

cempty) o=
(i.e. the null string of symbols).

i Whenever the precision of arithmetic is stated as being in
general not specified. or the outeome of a certain process is left
undefined or said 1o be undefined, this is to bhe interpreted in the
sense that g program only fully defines a computational process
if 1the accompanying information specifies the precision assumed,
the kind of arithmetic assumed, and the course of action to be
taken in all sueh eases as may oceur during the exeeution of the
compitation,

»Cf . W Backus, The syntax and semanties of the proposed
internationa) algebraie language of the Zirich ACM-GAMNM
conference. Proce. Internat. Conf. inf. Proe.. UNESCO, Paris,
June 1954,

1 Communicalions of the VOV

2. Basic Symbols, Identifiers, and

Strings. Basic Concepts.

Numbers,

The reference language is built up from the following
basic symbols:

(basic symbol) ::= (letter)/(digit)](logical value)/(delimiter)
2.1. LETTERS

(letter) ::= ajblcidle|figfhlililk|liminloipigirisitiulviwlzlyjz]
A|BICID|E|F|GIHIIVIKILIMINIO|PIQRISITIUIVIWIX|Y|Z
This alphabet may arbitrarily be restricted, or extended
with any other distinctive character (i.e. character not

coinciding with any digit, logical value or delimiter).

Letters do not have individual meaning. They are
used for forming identifiers and strings® (cf. sections 2.4.
Identifiers, 2.6. Strings).

2.2.1. DiGITS
(digit) ::= 0|1]2]34]5/6!718(9

Digits are used for forming numbers, identifiers, and
strings.

2.2.2. LoGICAL VALUES

(logical value) ::= truelfalse
The logical values have a fixed obvious meaning.
2.3. DELIMITERS

(delimiter) =
(specificator)
(operator) ::= <(arithmetic operator)|{relational
(logical operator){{(sequential operator)
(arithmetic operator’) ::= +|—|X{/|+|]

(operator)| (separator) (bracket)| (declarator)

operator),

(relational operator) = <|g|=[2!>|#

(logical operator) ::==|D|\V|Al-~

(sequiential operator) ::= go tolif[thenjelse|for|do’

(separator) ::= ,l.|i|:|;]:=|u|stepluntiliwhilejcomment

(hracket) ::= (N beginiend

(declarator) 2= own|Booleanlintegerirealiarrayiswitehi}
procedure

(specificator) ::= stringllabelivalue

Delimiters have a fixed meaning which for the most part
is obvious or else will be given at the appropriate place
in the sequel.

Typographical features such as blank space or change.
to a new line have no significance in the reference language.
They may, however, be used frecly for facilitating reading.

For the purpose of including text among the symbols of

¢ It should be particularly noted that throughont the reference
language underlining Jin typewritten copy; bholdface type in
printed copy—kd.] is used for defining independent hasic syimbolsj
(sec sections 2.2.2 and 2.3). These are understood to have no rela-
tion to the individual letters of which they are composed. Within
the present report [not including headings—Id.|. boldface will be
used for no other purpose.

Tdo is used in for statements. 1t hax no relation whatsoever
to the do of the preliminary report; which is not ineluded in
ALGOL 60,

« program the Tollowing “conuuent™ conventions hold:

The sequence of basie symbols: s eguiralent to

Ceomment Gy sequenee not containing o

’ '

begin comment Dy sequence not containing ;5 begin
end any sequence not containing end or; or elsen end

By equivalence is here meant, that any of the three strue-
tures shown in the left-hand column mav be replaced, in
any ocenrrence outside of strings, by the symbol shown on
the same Hne in the right-hand column without any
effeet on the action of the program. 1t is further understood
that the comment strueture encountered first in the text
when reading from left to right has precedence in being
replaced over later struetures contained in the sequence.

2.4, JDENTIFIERS
2.4.1. Syntax

ddentifier) = {letter)jddentifier) (letter)| Gdentifier> {digit)

2.4.2. lixamples

q
Sonp

av

a3tk TIN5
MARILYN

2.6.3. Semantics

Ideutifiers have no inherent meaning, but serve for the
entilication of simple variables, arrays, labels, switches,
W procedures. They may be chosen freely (ef., however,
ction 3.2.4. Standard Functions),

The same Identifier cannot be used to denote two
flferent quantities except when thesc quantities have
sjoint scopes as defined by the declarations of the pro-
am (cf. section 2.7. Quantities, Kinds and Scopes, and
ction 5. Declarations).

2.5. NUMBERS
2.5.1. Syntax

msigned integer) ::= (digit)| {unsigned integer) (digit)

nteger) ::= (unsigned integer)|+ (unsigned integer)|
— (unsigned integer}

decimal fraction) ::= .(unsigned integer)

*xponent part) ::= w(integer)

lecimal number) ::= (unsigned integer)|(decimal fraction)
(unsigned integer) (decimal fraction)

unsigned number) ::= (decimal number)|(exponent part)
(decimal number)(exponent part)

number) ::= (unsigned number)/+ (unsigned number)|
— (unsigned number)

2.5.2. Examples

0 —200.084 —.08310—-02
177 +07.43108 —107
5384 9.3410--10 10—4 y
+0.7300 2—w4d +1w+5

2.5.3. Semantics
Decimal numbers have their conventional meaning.

‘he exponent part is ascale factor expressed asan integral
ower of 10.

REVISED ALGOL 60
2.5.4 Tvpes
[ntegers are of tvpe integer. Al other numbers are of
tvpe real (ef, seetion 5.4, Tvpe Deelarations).
2.6, NTRINGS
2.6.1. Syntax

(properstring) = oy sequence of hasie svimbaols not containing
Cor yilempiy

{open string) = (proper siring) “copen string™
(OPen string s (open string?

(string) ;= ‘(open string’

2.6.2. Lixamples

Sk, = {I'A=/:"TV”
o This uis ua U string”

2.6.3. Semantics

In order to enable the language to handle arbitrary
sequences of basic symbols the string quotes * and ” are
introduced. The symbol u denotes o space. [t has no
significance outside strings.

Strings arc used as actual parameters of procedures
(cf. sections 3.2, Funetion Designators and 4.7, Procedure
Statements).

2.7. QuaNTities, Kinnps axn Scopes

The following kinds of quantities are distinguished:
simple variables, arrays, labels, switches, and procedures,

The scope of a guantity is the set of statements and
expressions in which the declaration of the identifier asso-
ciated with that quantity is valid. For labels see seetion
4135,

2.8. VALUES aND Types

A value is an ordered set of numbers (special case: a
single number), an ordcrcd set of logical values (special
case: & single logical value), or a label.

Certain of the syntactic units are said to possess values.
These values will in general change during the execution
of the program. The values of expressions and their con-
stituents are defined in section :<.The value of an array
identifier is the ordered set of values of the corresponding
array of subscripted variables (cf. section 3.1.4.1).

The various “types” (integer, real, Boolean) basically
denote properties of values. The types associated with
syntactic units refer to the values of these units.

3. Expressions

In the language the primary constituents of the pro-
grams describing algorithmic processes are arithmetic,
Boolean, and designational expressions. Constituents of
these expressions, except for certain delimiters, are logical
values, numbers, variables, function designators, and
elementary arithmetic, relational, logical, and sequential
operators. Since the syntactic definition of both variables
and function designators contains expressions, the defini-
tion of expressions, and their constituents, is necessarily
recursive.

(expression) ::= (arithmetic expression)| {Boolean expression)/
(designational expression)

Communications of the ACM 5

REVISED ALGOL 60

3.1. VARIABLES
3.1.1. Syntax

(variable identifier) ::= (identifier)
(simple variable) ::= (variable identifier)
(subscript expression) ::= (arithmetic expression)

(subscript list) ::= (subscript
(subscript expression)

(array identifier) ::= (identifier)

(subscripted variable) ::= (array identifier)[(subscript list)]

(variable) ::= (simple variable)| (subscripted variable)

expression)| (subscript list),

3.1.2. Examples

epsilon

detA

al7

Q7.2]

zlsin(nX pi/2),Q[3,n,4]]

3.1.3. Semantics

A variable is a designation given to a single value. This
value may be used in expressions for forming other values
and may be changed at will by means of assignment state-
ments (section 4.2). The type of the value of a particular
variable is defined in the declaration for the variable
itself (cf. section 5.1. Type Declarations) or for the corre-
sponding array identifier (cf. section 5.2. Array Declara-
tions).

3.1.4. Subscripts

3.1.4.1. Subscripted variables designate values which
are components of multidimensional arrays (cf. section
5.2. Array Declarations). Isach arithmetic expression of
the subscript list occupies one subscript position of
the subscripted variable, and is called a subscript,. The
complete list of subscripts is enclosed in the subscript,
brackets []. The array component referred to by a sub-
scripted variable is specified by the actual numerical value
of its subscripts (ef. section 3.3. Arithmetic Expressions).

3.1.4.2. Each subscript position acts like a variable of
type integer and the evaluation of the subscript, is under-
stood to be equivalent t.o an assignment, to this fictitious
variable (ef. section 4.2.4). The value of the subscripted
variable is defined only if the value of the subseript ex-
pression is within the subseript bounds of the array (cf.
section 5.2. Array Declarations).

3.2. I'tNeTioN DEBsiGNATORS
3.2.1. Svntax
(procedure identifier) ::= {identifier)
(actual parameter) ::= (string)|(expression’j{array identifier)!
(switch identifier)| (procedure identifier)
(letter stringy ::= {letter)|(letter siring) (leiter
(parameter delimiter) ::= , |} (letter string) :(
(actual parameter list" ::= (actual parameter)i

(actual parameter list>(parameter delimiter

(actuul parameter®
(aetual parametey part > i= {empty v Cactual purameter list)
(funetion designator ::= (procedure wdentifier

caetual parameter part

6 Communications of the ACY

3.2.2. Examples
sin{a—b)
J(v+s,n)
R
S(s=5)Temperature: (T')Pressure: (P)
Compile(* = "Stack:(&)
3.2.3. Semantics
Function designators define single numerical or logical
values, which result through the application of given sets
of rules defined by a procedure declaration (cf. section 5.4.
Procedure Declarations) to fixed sets of actual param-
eters. The rules governing specification of actual param-
eters are given in section 4.7. Procedure Statements. Not.
every procedure declaration defines the value of a function
designator.

3.2.4. Standard functions

Certain identifiers should be reserved for the standard
functions of analysis, which will be expressed as procedures.
It is recommended that this reserved list should contain:

abs (E) for the modulus (absolute value) of the value of the

expression E

sign(E) for the sign of the value of E(4+1 for E>O0, 0 for E=0,
—1 for E<0)

sqri(E) for the square root of the value of E

sin(E) for the sine of the value of E

cos(E) for the cosine of the value of E

arctan(I5) for the principal value of the arctangent of the value
o E

In(E) for the natural logarithm of the value of &

ezp(E) for the exponential function of the value of E (e¥).

These functions are all understood to operate indifferently
on arguments both of type real and integer. They will
all yield values of type real,cxcept for sign(I3) which will}
have values of type integer. In a particular represcnta-
tion these functions may be available without, explicit
declarations (cf. section 5. Declarations),

3.2.5. Transfer functions

It is understood that transfer functions between any
pair of quantities and expressions map be defined. Among
the standard functions it is recommended that, there bef
one, namely,

entier(B),

which "transfers" an expression of real type to one d
integer type, and assigns to it the value which is the
largest integer not greater than the value of Ii.

3.3. ARITHMETIC KXPRESSIONS
3.3.1. Syntax
(adding operator) ::= + -
(multiplying operator) ::= X|/!+
(primary) ::= (unsigned number)| (variable)|
(function designator){((arithietic expression })

(factor) ::= (primary)|(factor)](primary)
(term) = (fuctor){{erm){(multiplying operator) (factor,
(simplc arithmetic expression) ::= (term)]

(adding operator){term)!(simple arithmetic expression)

(adding operator)lerm?

(if clause) ::=if (Boolean expression)then

(arithmetic expression> ::= (simple arithmetic expression |
(if elause)(simple arithmetic expressionelse
(arithmetic expression !

3.3.2.

Primaries:

loxamples

7.3940—8

sum

wit+2,8]
cos(y+:X3)
{3 y+ouis)

F'actors:

omega
sumlcos(y+zX3)
794 10—8T 1wl +2,8) (a—3/y+oul8)

Terms:

U
omegaX sumicos(y+2zX3)/7.3040—-8Twli+2,817
(u—3/y+ml8)

Simple arithmetic expression:

U~ YidomegaX sumeos(y+zX3)/7.30¢ —Stwli+2,8]}
(a=3/y+vul8S)

Arithmetic expressions:

wXu—Q(S+Cu)T2

if (>0 then SH3XQ/ A ¢else 2X8+3Xq

if a<0 then U4V else if aXb>17 then U/V else if
k#y then V/U else 0

aX sin{omegaXl)

0.57wl2XalV X (VN -1)/2, 0]

(A Xarctan(y)+Z)T{T+Q)

if ¢ then n—1 else n

if a<0 then A/B else if b=0 then B/A else z

,t'sz first arithmetic expression following this Boolean
(the largest arithmetic expression found in this position

i

REVISED ALGOL 60
i understood). The constraetion:
else simple arithietic expression)
is equivalent to the construction:
else if true then Gimple arithmetic expression?

3.3 Operators and types

Apart from the Boolean expressions of if clauses, the
constituents of simple arithmetie expressions must be of
tvpes real or integer (ef. section 5.1 Type Declarations).
The meaning of the basic operators and the types of the
expressions to which they lead are given by the following
rules:

3.3.4.1. The operators 4+, —, and X have the conven-
tional meaning (addition, subtraction, and multiplication).
The type of the expression will be integer if both of the
operands are of integer type, otherwise real.

3.3.4.2. The operations (term)/(factor) and (term) =+
(factor) both denote division, to be understood as a multi-
plication of the term by the reciprocal of the factor with
due regard to the rules of precedence (ef. section 3.3.5).
Thus for example

a/bXT/(p—q)Xv/s
means
(X B XTIX ((p—q) ™)) X)X (7Y

is defined for all four combinations of
types real and integer and will yield results of real type
in any case. The operator = is defined only for two
operands both of type integer and will yield a result of
type integer, mathematically defined as follows:

The operator /

a+b= sign (a/b)Xentier(abs(a/b))

(ef. scetions 3.2.4 and 3.2.5).

3.3.4.3. The operation (factor)]{primary) denotes ex-
ponentiation, where the factor is the base and the primary
is the exponent. Thus, for example,

2intk meuans 27"

while

21 (nm) means 2™

Writing ¢ for a number of integer type, r for a number of
real type, and a for a number of either integer or real
type, the result is given by the following rules:

ati If i>0, aXaX ... Xa (¢ times), of the same type as a.
If i=0, if a0, 1, of the same type as a.
if =0, undefined.
1f <0, if a0, 1/(aXaX ... Xa) (the denominator has
—1 factors), of type real.
if a=0, undefined.
alr If a>0, exp(rXin(a)), of type real.
If a=0, if r>0, 0.0, of type real.
if =<0, undefined.
If a<0, always undefined.

3.3.5. Precedence of operators
The sequence of operations within one expression is

Communications of the ACM 7

REVISED ALGOL 60
generally from left to right, with the following additional
rules:

3.3.5.1. According to the syntax given in section 3.3.1
the following rules of precedence hold:

first: 1
second: X /+
third: T=

3.3.5.2. The expression between a left parenthesis and
the matching right parenthesis is evaluated by itself and
this value is used in subsequent calculations. Consequently
the desired order of execution of operations within an
expression can always be arranged by appropriate posi-
tioning of parentheses.

3.3.6. Arithmetics of real quantities

Numbers and variables of type real must be interpreted
in the sense of numerical analysis, i.e. as entities defined
inherently with only a finite accuracy. Similarly, the
possibility of the occurrence of a finite deviation from the
mathematically defined result in any arithmetic expression
is explicitly understood. No exact arithmetic will be
specified, however, and it is indeed understood that
different hardware representations may evaluate arith-
metic expressions differently. The control of the possible
consequences of such differences must be carried out by
the methods of numerical analysis. This control must be
considered a part of the process to be described, and will
therefore be expressed in terms o the language itself.

3.4,. BooLEaAN IEXPRESSIONS
3.4.1. Syntax
(relational operntor) 1= <|Zi=|2|>|#
(relation) ::= {(simple arithmetic expression)
(relational operator)(simple arithmetic expression)
(Boolean primary) 1= (ogieal value)|(variable)|
(functioii designator)i(relation ¥ ({BBoolean expression))
(Baolean secondary) ::= (Boolean primary Y — (Boolean primary)
(Boolean factord ::= (Boolean secondary)|
(Boolean fact or)A (Boolean secondary)
(Boolean term) ::= (Boolean factor’| (Boolean term?
V (Boolean factor®
{mplication’ ::= (Boolean term) dmplication »D(Boolean term)
(simple Boolean) ::= (mplication)'
(simple Boolean)= mplicatioii»
(Boolean expression) ::= (simple Boolean)|
(if clause)simple Boalean) else (Boolean expression

3.4.2. lixamples

r= —2
Y>1VVoe<y
a+b > = 5N z2—d > q12
pAG N XY
g=—a/\ONA— ¢ NVdVeD~ T
if 1<1 then s>w else h=Z¢
if if if @ then U else ¢ then d else § then g else h<k
3.4.3. Semanties
A Boolean expression is a rule for computing a logical
value. The prineiples of evaluatioii are entirely analogous
to those given for arithmetic expressions i scetion 3.3.3.
344, Types
Variables and function designators entered as Boolean

8 Communications of the VCM

primaries must be declared Boolean (cf. section 5.1.
Type Declarations and section 5.4.4. Values of Function
Designators).

3.4.5. The operators

Relations take on the value true whenever the corre-
sponding relation is satisfied for the expressions involved,
otherwise false.

The meaning of the logical operators— (not), A (and),
V (or), D (implies), and = (equivalent), is given by the
following function table.

bl false false true true
b2 ____false _true false_true
—bl true true false false
blAb2 false false false true
b1VVb2 false true true true
blDh2 true true false true
bl=b2 true false false true

3.4.6. Precedence of operators

The sequence of operations within one expression is
generally from left to right, with the following additional
rules :

3.4.6.1. According to the syntax given in section 3.4.1
the following rules of precedence hold:

first: arithmetic expressions nccording to section 3.3.5.

second: <=2 >
third: -
fourth: A
fifth: V
sixth: D
seventh: =

3.4.6.2. The use of parentheses will be interpreted ing
the sense given in seetion 3.3.5.2.
3.5. DESIGNATIONAL JEXPRESSIONS ¥
3.5.1. Syntax '

(abeld ::= (identifier)! (unsigned integer)
(switch identifier) ::= (identifier)
(switch designutor) ;= (switch identifier M(subseript expression |}

(simple designationul expression; ::
((designational expression))
(designational expression® 1= (simple designational expression |
(if clause)(simple designational expression else

(designational expression®

3.5.2. Examples

17

79

Chooseln —1)

Town[if y<0 then N else N+1]

if Ab<c then 17 else glif w=0 then 2 else n]

= (label 'j (switch designator |

3.5.3. Semantics ‘

A designational expression is & rule for obtaining a label!
of a statement (¢f. section 4. Statementx). Again they
principle of the evaluation is entirely analogous to that off
arithmetic expressions (seetioii 3.3.3). In the general case
the Boolean expressions of the if elauses will select al
simple designational expression. If this s a dabel the;
desired result is already found. A switch designator refers
to the corresponding switeh declaration (el scetion 55

Switeh Declarationsy and by the actual numerieal value
ol 1ts subseript expression selects one of the designational
expressions hsted in the switeh declaration by counting
these from left o right, Sinee the designational expression
thus selected mayv again be a switeh designator this evalua-
tion s obviously a recursive process.

3.5. 4 The subseript expression

The evaliation of the subseript expression is analogous
to that of subseripted variables (ef. section 3.1.4.2). The
value of a switeh designator is defined only if the subseript
expression assumes one of the positive values [, 2,3, ... |,
where nis the number of entries in the switeh list,

3.5.5. Unxigned integers as labels

Unsigned integers used as labels have the property that

leading zeros do not affeet their meaning, ec.g. 00217

g.
denotes the same label as 217.

1. Statements

The units of operation within the language are called
statements, They will normally be executed consecutively
as written. Iowever, this sequence of operations may be
broken by go to statements, which define their suecessor
explicitly, and shortened by conditional statements,
which may cause certain statements to be skipped.

Tn order to make it possible to define a specific dynamic
sueeession, statements may be provided with labels.

Sinee sequences of statements may be grouped together
into compound statements and blocks the definition of
statement must necessarily be recursive. Also since decla-
rations, deseribed in section 3, enter fundamentally into
the syntactic structure, the syntactic definition of state-
ments must suppose declarations to be already defined.

4.1. CoMPOUND STATEMENTS AND BLOCKS
4.1.1. Syntax

{unlubelled basic statement) ::= (assignment statement)]|
2o to statement)| (dummy statement)| (procedure statement)

(basic statement) ::= (unlabelled basic statement)|(label):
(basic stutement)

{unconditional statement) ::= (basic statement)]
{compound statement)| (block}

{statement) ::= (unconditional statement)|
(conditional statement)|(for statement)

{compound tail) ::= (statement) end |(statement)
{compound tail)

(block head) ::= begin (declaration)|(block head) ;

H

{declaration)
(unlabelled compound) ::= begin (compound tail)
(unlabelled block) ::= (block head) : (compound tail}
{compound statement) ::= (unlabelled compound)|

(label }: (compound statement)
(block) ::= (unlabelled block)| (label): (block)
{program) ::= (block }|{compound statement)

This syntax may be illustrated as follows.. Jenoting arbi-
trary statements, declarations, and labels, by the letters

8, D, and L, respectively, the basic syntactic units take
the forms:

Compound statement:

L:L: . beginS ; S ; ..8 ; Send

REVISED ALGOL 60

Block :
I: I, .. begin D 3 D 5 . D ’, R T B
S end

It should be kept in mind that cach of the statements
may again be a complete compomnd statement or block
L 1.2, Examples

Basie statements:

a :=ptyq

zo to Naples

START: CONTINUE: W .= 7.993
Compound statement :

: for iy =
z+Alyl
if 1>q then go to STOP else if t>w—2 then

go to S

dw: St W

beginr := 0 I step | until »n de

€r =

»

= x+hob end
Block :

: begin integer t, & ; real w
[) ;

for: := 1 step 1 until m do
For k := i+l step 1 untit m do
begin w = A{, k|
Ald, k) = Ak, 2]
Afk, i} :=w end for i and k
end bloek Q@

L. Semanties

livery block automatically introduces a new level of
nomenclature, This is realized as follows: Any identifier
occurring within the block may through a suitable declara-
tion (cf. section 5. Declarations) be specified to be local
to the block in question. This means (a) that the cntity
represented by this identitier inside the block has no
existence outside it, and (b) that any entity represented
by this identifier outside the block is completely inacces-
sible inside the block.

Identifiers (except those representing labels) occurring
within a block and not being declared to this block will be
nonlocal to it, i.e. will represent the same entity inside
the block and in the level immediately outside it. A label
separated by a colon from a statement, i.e. labelling that
statement, behaves as though declared in the head of the
smallest embracing block, i.e. the smallest block whose
brackets begin and end enclose that statement. In this
context a procedure body must, be considered as if it were
enclosed by begin and end and treated as a block.

Since a statement of a block may again itself be a block
the concepts local and nonlocal to a block must be under-
stood recursively. Thus an identifier, which is nonlocal
to a block A, may or may not be nonlocal to the block B
in which A is one statement.

4.2. ASSIGNMENT STATEMENTS
4.2.1. Syntax

(left part) ::= (variable) := /(procedure identifier) :=
(left part list) ::= (left part)|(left part list)(left part)
(assignment statement) ::= (leftpart list) (arithmetic expression |

(left part list)(Boolean expression)

Communications of the ACM 9

REVISED ALGOL 60

4.2.2. Examples

= pl0] := n 1= nt+l+s

V:=Q>YNZ

4.2.3. Semantics

Assignment statements serve for assigning the value of
an expression to one or several variables or procedure
identifiers. Assignment to a procedure identifier may only
occur within the body of a procedure defining the value of
a function designator (cf. section 5.4.4). The process will
in the general case be understood to take place in three
steps as follows:

4.2.3.1. Any subscript expressions oceurring in the left
part variables are evaluated in sequence from left to right.

4.2.3.2. The expression of the statement is evaluated.

4.2.3.3. The value of the expression is assigned to all
the left part variables, with any subscript cxpressions
having values as evaluated in step 4.2.3.1.

4.2.4. Types

The type associated with all variables and procedure
identifiers of a left part list must be the same. If this type
is Boolean, the expression must likewisc be Boolean.
If the type is real or integer, the expression must be
arithmetic. 1 the type of the arithmetic expression differs
from that associated with the variables and procedure
identifiers, appropriate transfer functions are understood
to be automatically invoked. For transfer from real to
integer type, the transfer function s understood to
vield a result equivalent 1o

enlicr(154-0.5)

where I s the value of the expression. The type asso-
ciated with a procedure identifier is given by the deelarator
which appears as the first svmbol of the corresponding
“procedurce declaration (ef. seetion H.4.4).

4.3. Go To STATEMENTS

4.3.1. Syntax
{go to statement) 1= o Lo (designational expression)

4.3.2. F.xamples

o to 8

go to eril In+1]

go 10 Townlif y <O then N else N+1}

go 1o if Ab<e then 17 else ¢lif w<0 then 2 else n]

3

4.3.3. Semanties

A go to statement interrupts the normal sequence of
operations, defined by the write-up o statements, by
defining its suceessor explicitly by the value of a designa-
tional expression. Thus the next statement to be executed
will be the one having this value as its label.

4.3.4. Restriction

Sinee labels are inherently local, 1o go 1o statement can
lead from outside into & block, A go to statement may,
however, Jead from outside into a compound statement.

10 Communications of the ACW

4.3.5. Go to an undefined switch designator

A go to statement is equivalent to a dummy statement
if the designational expression is a switch designator whose
value is undefined.

4.4. DuMMY STATEMENTS
4.4.1. Syntax

N

{(dummy statement) ::= (empty)
4.4.2. Examples
L:
begin ... ; John: end
4.4.3. Semantics

A dummy statement executes no operation. It may
serve to place a label.

4.5. CONDITIONAL STATEMENTS
4.5.1. Syntax

(if clause) ::= if (Boolean expression) then
(unconditional statement) ::= (basic statement)|
{compound statement)| (block)
(if statement) ::= {(if clause) (uncondilional statement)
{conditional statement) ::= (if statement)|{if statement) clse
{statement)| (if clause){for statement)|
(label) : (conditional statement)

4.5.2, Examples

if z>0 then n := n+1
if v>u then V: g:= ntm else go to R
if s<OVIP=ZQ then AA: begin if ¢g<v then ¢ = v/s
clse ¥y := 2Xa end
clse if v>5 then a = v—gq else if >5-!
then go to S
4.5.3. Semanties
Conditional statements cause certain statements to be
exceuted or skipped depending on the running values of
specified Boolean expressions,
4.5.3.1. If statement. The unconditional statement of
an if statement will be exceuted if the Boolean expression
of the if clause is true. Otherwise it will be skipped and
the operation will be continued with the next statement.
4.5.3.2. Conditional statement. According to the svn-
tax two different forms of conditional statements are
possible. These may be ilustrated as follows:

il Bl then 81 oelse if B2 then S2 else 83 0 &4
and

if Bl then S)oelse if B2 then 832 else if B3 then 83 ; N4

Here BT to B3 are Boolean expressions, while S} to <3
are unconditional statements. 84 is the statement following
the complete conditional statement.

The exceutior of a conditional statement may be de-
seribed as follows: The Boolean expression of the if elauses
are evaluated one after the other n sequenee from left 1o
right until one vielding the value true is found. Then the
unconditional statement following this Boolean ix exe-
euted. Undess this statement defines its successor explicitdy
the next statement to be exeeuted will he 84, ie. the state-

ment Tollowing the complete conditional statement. Thus
the clfect of the delimiter else may be deseribed by sayving
that it detines the suecessor of the stateaent it follows to
pe the statement following the complete conditional
statement.

The construction

else (uneonditional statement
is cquivalent to
else if true then (unconditional staiement)

[f none of the Boolean expressions of the if clauses is
true, the effect of the whole conditional statement will be
equivalent to that of a dummy statement.

For further explanation the following picture may be
usetud:

e e e e e

T T !

if Bl then St else it B2 then 82 else 53 ; 54

LSRN I SR g

B2 false

14.5.4. Go to into a conditional statement

The effect of a go to statement leading into a conditional
statement follows direetly {rom the above explanation of
the cffect of else.

1.6, FOR STATEMENTS

4.6.1. Syntax

(for list element) 1= (arithmetic expression |
(arithmetic expression) step (arithmetic cxpression) until
(artthmetic cxpression)|(arithmetic expression) while
(Boolean expression)

(for list) ::= (for list element)|(for list) , (for list element)
{for clause) ::= for {(variable) := (for list) do
(for statement) ::= (for clause)(statement)|

‘label): {for statement)
4.6.2. Examples

for q := 1 step s until n do 4A[q] := Blq]
for k := 1, V1X2 while V1<N do
for j := I4+G, L, 1 step 1 until N, C+D do
Alk,s} := Blk,j]

4.6.3. Semantics

A for clause causes the statement S which it precedes to
be repeatedly executed zero or more times. In addition it
performs a sequence of assignments to its controlled
variable. The process may be visualized by means of the
following picture:

Initialize ; test

; ; statement S ; advance : successor

for list exhausted

1 this picture the word initialize means: perform the first
ssignment of the for clause. Advance means: perform the
ext assignment of the for clause. Test determines if the
st assignment has been done. If so, the execution con-

REVISED ALGOL 60

tinues witd the suceeessor of the for statement, It not, the
statement following the for clanse is executed.
1.6,k The tor list elements
The for list gives o rule for obtaining the values which
are conseentively assigned fo the controbedl variable. This
<equence of values is obtained frome the for list clements
by taking these one by one in the order in which they are
written. The sequence of valnes generated by each of ttic
three species of for list clenients and the corresponding
exceution of the statement X are given by the following
rules:
4.6.1.1. Arithmetie expression. This element gives rise
to one value, namely tho value of tho given artthmetic
expression as caleulated immediately before the corre-
sponding execution of the statement S,
4.6.4.2. Step-until-clement. An element of tho form
A step B until C, where A, B, and C, arc arithmetic cx-
pressions, gives rise to an execution which mny he de-
seribed most coneisely in terms & additional Avncou
statements as follows:
V:i=A
L1: if (V=C)X sign(B)>0 1then go Lo clement exhausted;
statement S
V= V+8
go to L1

where V is the controlled variable of the for clause and
element exhausted points to the evaluation according to
the next element in the for list,,or if the step-until-element
is the last of the list, to the next statement in the program.

4.6.4.3. While-elcment. The exeeution governed by a
for list clement of the form & while ¥, where E is an
arithmetic and I a Boolean expression, is most concisely
described in terms of additional Arcon statements as
follows:
L3:V:=E ;

if = F then go to element exhausted

Statement S
gotol3 ;

where the notation is the same as in 4.6.4.2 above.

4.6.5. The value of the controlled variable upon exit

Upon exit out of the statement S (supposed to be com-
pound) through a go to statement the value of the con-
trolled variable will be the same as it was immediately
preceding the execution of the go to statement.

If the exit is due to exhaustion of the for list, on the
other hand, the value of the controlled variable is unde-
fined after the exit.

4.6.6. Go to leading into a for statement

The effect of a go to statement, outside a for statement,
which refers to a label within the for statement, is unde-
fined.

4.7. PROCEDURE STATEMENTS
4.7.1. Syntax

(actual parameter) ::= (string)/(expression)((array identifier)(
(switch identifier)| (procedure identifier)
(letter string) ::= (letter)| (letter string) (letter)

Communications of the ACM 11

REVISED ALGOL 60

(parameter delimiter) ::=,|) (letter string):(

(actual parameter list) ::= (actual parameter)|
(actual parameter list)(parameter delimiter)
(actual parameter)

(actual parameter part) ::= (empty)|
((actual parameter list))
(procedure statement) ::= (procedure identifier)

(actual parameter part)

4.7.2. Examples
Spur (A)Order: (7)Result to: (V)
Transpose (W,v+1)
Absmaz(A,N,M,Yy,I,K)
Innerproduct(Alt,P,u},B[P],10,P,Y)

These examples correspond to examples given in section
5.4.2.

4.7.3. Semantics

A procedure statement serves to invoke (call for) the
execution of a procedure body (cf. section 5.4. Procedure
Declarations). Where the procedure body is a statement
written in ALGoOL the effect of this execution will be
equivalent to the effect of performing the following opera-
tions on the program at the time of execution of the pro-
cedure statement:

4.7.3.1. Value assignment (call by value)

All formal parameters quoted in the value part of the
procedure declaration heading are assigned the values
(cf. section 2.8. Values mid Types) of the corresponding
actual parameters, these assignments being considered as
being performed explicitly before entering the procedure
body. The effect is as though an additional block embrac-
ing the procedure body were ereated in which these assign-
ments were made to variables local to this fictitious block
with types as given iti the corresponding specifications
(cf. section 5.4.5). As a consequence, variables called by
value arc to be considered as nonlocal to the body of the
procedure, but local to the fictitious block (cf. section
54.3).

4.7.3.2. Name replacement (call by name)

Any formal parameter not quoted in the value list is
replaced, throughout the procedure body, by the corre-
sponding actual parameter, after enclosing this latter in
parentheses wherever syntactically possible. Possible
conflicts between identifiers inserted through this process
and other identifiers already present within the procedure
body will be avoided by suitable systematic changes of the
formal or local identifiers involved.

4.7.3.3. Body replacement atid execution

Fmally the procedure body, modified as above, is
inserted in place of the procedure statement and executed.
If the procedure is called from a place outside the scope
of any nonlocal quantity of the procedure body the con-
flicts between the identifiers inserted through this process
of body replacement and the identifiers whose declarations
arc valid at the place of the procedure statement or func-
tion designator will be avoided through suitable systematie
changes of the latter identifiers,

4.7.4. Actual-formal correspondence

The correspondence between the aetual parameters of

12 Communications of the ACM

the procedure statement and the formal parameters of the
procedure heading is established as follows: The actu:i
parameter list of the procedure statement must have the
same number of entries as the formal parameter list of the
procedure declaration heading. The correspondence i
obtained by taking the entries of these two lists in the
same order.

4.7.5. Restrictions

For a procedure statement to be defined it is evidently
necessary that the operations on the procedure body de-
fined in sections 4.7.3.1and 4.7.3.21ead to a correct ALgoy,
statement.

This imposes the restriction on any procedure statement|
that the kind and type of each actual parameter be com-
patible with the kind and type of the corresponding formal
parameter. Some important particular cases of this gen-
eral rule are the following:

4.7.5.1. Ifa string is supplied as an actual parameter in|
a procedure statement or function designator, whose
defining procedure body is an ALGOL 60 statement (as
opposed to non-ALcoL code, cf. section 4.7.8), then this
string can only be used within the procedure body as an
actual parameter in further procedure calls. Ultimately it
can only be used by a procedure body expressed in non-
ALGoL code.

4.7.5.2. A formal parameter which occurs as a loft par
variable in an assignment statement within the procedur
body and which is not called by value can only correspond
to an actual parameter which is a variable (special case off
expression) .

4.7.5.3. A formal parameter which is used within the
procedure body as an array identifier can only corre
spond to an actual parameter which is an array ideutifier,
of an array of the same dimensions. In addition if the
formal parameter is called by value the local array (:1'(eat(»dF
during the call will have the same subscript bounds agy
the actual array.

4.7.5.4. A formal parameter which is called by value
cannot. in general correspond to a switch identifier or a
procedure identifier or a string, because these latter do not,
possess values (the exception is the procedure identifier of],
a procedure declaration which has an empty formal
parameter part, (¢f. section 5.4.1) and which defines the
value of a function designator (cf. section 5.4.4). This pro-
cedure identifier is 1n itself a complete expression). ;

4.7.5.5. Any formal parameter may have restrictions,
on the type of the corresponding actual parameter ass07
ciated with it (these restrictions may, or may not, he:
given through specifications in the procedure heading)
In the procedure statement such restrictions must evi
dently be ob. 2rved.

4.7.6. Dcleted. i

4.7.7. Parameter delimiters

All parameter delimiters are understood To he equiviy

lent. No correspondence between the parameter delimiters
used in a procedure statement and those used in the pro-
cedure heading is expected bevond their number heing the

-

1. Thus the information conveved by using the elabo-
(e ones isoentirely optional.

1.7.8. Procedure body expressed in code

The restrictions imposed on a procedure statement
lling a procedure having its body expressed in non-
~aon code evidently can ouly be derived from the charae-
pisties of the code used and the intent of the user and
us fall outside the secope ot the reference langnage.

Declarations

Declarations serve to define certain properties of the
wantities used in the program, and to associate them with
entifiers. -\ deelaration of an identifier is valid For one
ock. Outside this block the particular identifier may be
ed for other purposes (cf. section 4.1.3).
Dynamically this implies the following :at the time of an
try into a block (through the begin, since the labels
side are local and therefore inaccessible from outside)
| identifiers declared for the block assume the signifi-
nee implied by the nature of the declarations given.
these Identifiers had already been defined by other
selarations outside they are for the time being given a
swosignificance. Identifiers which arc not declared for the
ock, on the other hand, retain their old meaning.
At the time of an exit from a block (through end, or by
go to statement) all identifiers which arc declared for
le block lose their local significance.
A declaration may be marked with the additional
sclarator own. This has the following effect: upon a re-
itry into the block, the values of own quantities will be
nchanged from their values at the last exit, while the
ues of declared variables which arc not marked as own
‘e undefined. Apart from labels and formal parameters
" procedure declarations and with the possible exception
" those for standard functions (cf. sections 3.2.4 and
2.5), all identifiers of a program must be declared. S o
lentifier may be declared more than once in any one
lock head.
Syntax.

leclaration) ::= (type declaration)((array declaration)|
(switch declaration)| (procedure declaration)

5.1. TyrE DECLARATIONS
5.1.1. Syntax
ype list) ::= (simple variable)|
‘simple variable) , (type list)
¥pe) ::= real | integer | Boolean
ocal or own type) ::= (type)lown (type)
¥Ype declaration) ::= (local or own type){type list)

5.1.2. Examples

integer p,q,s
own Boolean Acryl,n

5.1.3. Semantics -
Type declarations serve to declare certain identifiers to

‘Present simple variables of a given type. Real declared
ariables may only assume positive or negative values

REVISED ALGOL 60

inclnding zero. Tiuteger deelaved variables may ol assuine

positive and negative integral values ineluding zervo.
Boolean deelared variables mayv only assame the values
true and false.

In artthmetic expressions any position which can be
oceupied by a real declared variable may be oceupied by
an integer deelared variable.

For the semanties of own, =ce the fourth paragraph of

=ection 5 above.

2.oArray DecraraTioNs
2.1, Syntax

[T)

dower bound) 1= {arithmetic expression)
(upper bound) ::
{(bound pair)

= (arithmetic expression)
::= {lower bound)’: (upper bound)
ound pair list) ::= (bound paird! (hound pair list), (hound pair)
{array segment) = (array deatifier)[(bound pair list}]|
(array identificr), (array segment)
(array list) ::= (array segment){array list), (array segment)
(array declaration) = array (array list)!(loeal or own typo)
array (array list)
5.2.2. lixamples
array a, b, c[T:n,2:m], s[—=2:10]
own integer array . [if ¢<0 then ? else 1:20]
real array q[—7:—1]
5.2.3. Semantics
An array declaration declares one or several identifiers
to represent multidimensional arrays of subscripted
variables and gives the dimensions of the arrays, the
bounds of the subscripts and the types of the variables.
5.2.3.1. Subseript bounds. The subseript bounds for
any array are given in the first, subscript bracket following
the identifier of this army in the form of a bound pair list.
Each item of this list gives the lower and upper bound of a
subscript in the form of two arithmetic expressions sepa.-
rated by the delimiter The bound pair list gives the
bounds of all subscripts taken in order from left to right.
5.2.3.2. Dimensions. The dimensions are given as the
number of entries in the bound pair lists.
5.2.3.3. Types. All arrays declared in one declaration
are of the same quoted type. If no type declarator is
given the type real is understood.
5.2.4. Lower upper bound expressions
5.2.4.1 The expressions will be evaluated in the same
way as subscript expressions (cf. section 3.1.4.2).
5.2.4.2. The expressions can only depend on variables
and procedures which are nonlocal to the block for which
the array declaration is valid. Consequently in the outer-
most block of a program only array declarations with
constant bounds may be declared.
5.2.4.3. An array is defined only when the values of all
upper subscript bounds are not smaller than those of the
corresponding lower bounds.
5.2.4.4. The expressions will be evaluated once at each
entrance into the block.
5.2.5. The identity of subscripted variables
The identity of a subscripted variable is not related to
the subscript bounds given in the array declaration. How-

Communications of the ACM 13

REVISED ALGOL 60

ever, even if an array is declared own the values of the
corresponding subscripted variables will, at any time, be
defined only for those of these variables which have sub-
scripts within the most recently calculated subscript
bounds.

5.3. SWiTcH DECLARATIONS
5.3.1. Syntax
(switch list) ::= (designational expression)/
(switch list), (designational expression)
(switch declaration) ::=switch (switchidentifier):= (switchlist)

5.3.2. Examples

switch § := 81,82,Q{m], if v>~5 then S3 else S4
switch Q :=plw

5.3.3. Semantics

A switch declaration defines the set of values of the
corresponding switch designators. These values are given
one by one as the values of the designational expressions
entered in the switch list. With each of these designational
expressions there is associated a positive integer, 1,2, ...,
obtained by counting the items in the list from left to
right. The value of the switch designator corresponding to
a given value of the subscript cxpression (cf. section 3.5.
Designational Expressions) is the value of the designa-
tional expression in the switch list having this given value
as its associated integer.

5.3.4. Evaluation of expressions in the switch list

An expression in the switch list. will be evaluated every
time the item of the listin which the expression occurs is
referred to, using the current values of all variables
involved.

5.3.5. Influence of*scopes

If a switch designator oveurs outside the scope of a
quantity entering into a designational expression in the
switch list, and an evaluation of ibis switch designator
selects this designational expression, then the conflicts
between the identifiers for the quantities in this expres-
sion atid the identifiers whose declarations are valid at, the
place of the switeh designator will he avoided through
suitable svstematic changes of the latter identificrs.

5.4. PROCEDURE IDLCLARATIONS
5.4.1. Syutax

(formal parameter) ::= (identifier»

(formal parameter list) == (formal parameter)|
{formal parameter listd(parameter delimiter)
(formal parameter)

formul parameter part® := (empty Vi ({formal parameter list))

(identifier list) ::= {identifierj{identifier list), (identifier)
(value part) := value(dentifier listy 5 Hempty?
(specifier) ::= stringl(type)|array (iypedarray|labelswitch!

procedure! (tyvpe)procedure
(specification part) := (emply s (specifier) Gdentifier list> ;|
(speeification part){specifier »Gdentifier list
(procedure heading) 1= (procedure identifier)
(Tormual parameter part » (value part) {specification part
(procedure body) 1= (statement;(cade?
(procedure declarationy ;=
procedure (procedure heading ‘procedure hody |
(yper procedure (procedure heading > (procedure body)

14 Communications of the ACM

5.4.2. Examples (see also the examples at the end o
the report)

procedure Spur{a)Order :(n)Result :(s) ; value n ;

arraya ; integern ; reals ;

begin integer k ;

s:=0 ; =

fork := 1 step 1 until n do s := s+alk,k]
end

procedure Transpose(a)Order:(n) ; valuen ;
array ¢ ; integer n ;
begin real w ; integer i, k ;
for 7 := 1 step 1 until n do
for k := 1+1 step 1 until » do
begin w = ali k] ;
ali k] = afk,i] ;
alk,i] :=w
end
end Transpose

integer procedure Step (u) ; realu ;
Step := if 0SuAu=1 then 1 else 0

procedure Absmaz(a)size:(n,m)Result:(y)Subseripts:(z,k) ;

comment The absolute greatest element of the matrix ¢
of size n by m is transferred to y, and the subscripts of th
element to i and &

array ¢ ; integern,m, i, k ; realy ;

begin integer p, ¢ ;

y:=0 ;

for p :=1 step 1 until n do for g := 1 step | until 7 do

if abs(a[p,g])>y then begin y := abs(alp,g)) ; © = p
I :=g¢
end end Absmazr

procedure Innerproduct(a,b)Order:(k,p)Result:(y) ; valuek
integer k,p ; reulyuab ;
begin real s ;

s:=0 ;

for p := 1step 1 until k do s
y =38

end Innerproduct

= s+aXb

5.4.3. Semantics

A procedure declaration serves to define the procedw
associated with a procedure identifier. The principal con
stituent of a procedure declaration is a statement or
piece of code, the procedure body, which through the w
of procedure statements and/or function designators ma
be activated from other parts of the block in the head «
which the procedure declaration appears. Associated wit
the body is a heading, which specifies certain identific
occurring within the body to represent formal parameter
Formal parameters in the procedure body will, wheneve
the procedure is activated (ef. section 3.2, IFunetic
Designators and section 4.7, Procedure Statement
he assigned the values of or replaced by actual parameter
Identifiers in the procedure body which are not fornu
will be either local or nonlocal to the body depending o
whether they are declared within the body or not. Tho:
of thent which are nonlocal to the body may well be loe:
to the block in the head of which the procedure declar:
tion appears. The procedure body always acts like

ock, whether 1t has the form of one or not. Consequently
1 scope of any label labelling a statement within the
wly or the body itself ean never extend beyvond the pro-
In addition, if the identifice of o formal
arameter s declared anew within the proecedure body
neluding the case of its use as a label as in section 4.1.3),

wdure body.

is thereby given a local significanee and actual param-
ers which correspond to it are aceessible throughout
e scope of this inner loeal quantity,

.t Values of funetion designators

For a procedure declaration to define the value of a
mnetion designator theve must, within the procedure
ody, oceur one or more explicit assighment statements
ith the procedure identifier in o left part; at least one of
wese must be executed, and the type associated with the
rocedure identifier must be declared through the appear-
nee of a type deelarator as the very first symbol of the
rocedure declaration, The last value so assigned is used
y continue the evaluation of the expression in which the
netion designator oceurs. Any occurrence of the pro-
edure identifier within the body of the procedure other
han in a left part in an assighment statement denotes
etivation of the procedure,

5.4.5. Specifications

In the heading a speeification part, giving information
bout the kinds and types of the formal parameters by
wans of an obvious notation, may be included. In this
ast no formal parameter may occur more than once.
pecifications of formal parameters called by value (ef.
retion 4.7.3.1) must be supplied and specifications of
rmal parameters called by name (ef. scetion 1.7.3.2)
1y be omitted.

3.4.6. Code as procedure body

[t is understood that the procedure body may be ex-
ressed in non-ALcoL language. Since it is intended that
he use of this feature should be entirely a question of
ardware representation, no further rules concerning
1us code language can be given within the reference
inguage

Examples of Procedure Declarations:

XAMPLE 1.

rocedure euler {fet, sum, eps, tim) ; value eps, tim ;
iteger ttm ; real procedurefct ; real sum,eps ;
pmment euler computes the sum of fet(z) for 7 from zero up to
finity by means of a suitabley refined euler transformation. The
Immation is stopped as soon ag timtimes in succession the abso-
ite value of the terms of the transformed series are found to be
88 than eps. Hence, one should provide a function fet with one
tteger argument, an upper bound eps, and an integer ¢¢m. The
utput is the sum sum. euler is particularly efficient in the case
f a slowly convergent or divergent alternating series

egin integer 7, k,n,t ; array m{0:15] ; real mn, mp,ds ;

=n=t: =0 ; m0]:=fct®) ; sum:=m{0]/2 ;
extterm: 1 == i+4+1 ; mn = fet@) ;
for k := 0 step 1until n do

begin mp := (mn+mlk))/2 ; mk} :==mn ;

mn = mp end means

REVISED ALGOL 60

if (absomn) <absonin)y
begin ds =

v v <13) then
miny2 noi= -+t omn] =
mn end aceept
elseds ;= mn
sum o= sum + ds
if abs(ds) <eps then f = t+lelset ;=0
i€ t<tim then go to nextierm
end ruler

Ixamrny 2.

procedure RK(eyn KT epsetacl gk j0
Boolcan i

;o ovalue Ty

integer n i real repselaxlti arvay

yyE ; procedure 'KT
comment: R integrates the system g =Silog e oo Yn)
k=12,n) of differentinl equations with the method of Runge-

Kutta with antomatie search for appropriate length of integration
step. Parameters are: The initial values rand ylk] for z and the un-
known functions ye(x). The order n of the system. The procedure
FRT (ryynz) which represents the system to be integrated, i.c.
the set of functions fi . The tolerance values eps and eta which
govern the accuracy of the numerical integration. The end of the
integration interval z#. The output parameter y£ which rvepre-
sents the solution at r=z£. The Boolean variable fi, which must
always be given the value true for an wolated or first entry into
RK. If however the functions y must be available at several mesh-
points 1o, 1y, ..., Tn , then the procedure must be ealled repeat-
edly (with o=ury, £l =xin, for k=0, 1, ..., n—1) and then the
later calls may oceur with fi=false which saves computing time.
The input parameters of FAT must be ey,n, the ontput parameter
z representy the set of derivatives zlkl=fi(zy01}, ¥(2), ..., ylnD
for z and the aetual y's. A procedure comp enters as n nonloeal
identifier
begin

b2 y3lm] ; real 200203, H 5 Boolean oul
integer £,j ; own real s Hs
procedure RKUST (ryhzeye) ; real
wye

comment: RKIST integrates one single RUNGE-KUTTA
with initial values zy(k] which yields the output
parameters ze=xz+h and yelk], the latter being the
solution at re. Important: the parameters n, FKT, z
enter RA1ST as nonlocal entities ;

array

zhxe ; array

begin
array w(l:n], ¢[l:5] ; integerk,j ;
a(l] := al2] := alb] := ~/2 ; al3] := aldl :
re :=zx
for k := | step | until n do yelk] := wik] := ylk] ;
for j := 1 step 1 until 4 do
begin
FKT(zewn,z)
ze := x+alj] ;
for k := 1 step 1 until n do
begin
wlk] 1= ylkl+al/IxXzk] ;
yelk] := yelk] + ali+11X2{k]/3

8 This RK-program contains some new ideas which are related
to ideas of S. GILL, A process for the step-hy-step integration of
differential equations in an automatic computing machine,
[Proc. Camb. Phil. Sec. 47 (1851), 96]; and E. FroBERG, On the
solution of ordinary differential equations with digital computing
machines, [Fysiograf. Sdllsk. Lund, Forhd. 20, 11 (1950), 136-1521.
It must be clear, however, that with respect to computing time
and round-off errors it may not be optimal, nos has it actually
been tested on a computer.

Communications of the ACM 15

REVISED ALGOL 60

end &
end 7
end RRIST ;
Begin of program:
iffi then begin H :=zE-z ; s :=0endelseH :=Hs
out := false ;
AA:if (z42.01XH~2E>0)=(H>0) then
begin Hs := H ; out := true ; H := (E—=z)/2
end if ;
RKIST (z,y2XHzlyl) ;
BB: RKI1ST (z,y,Hax252) ; RK1ST(x2,y2,H23y3) ;
for k := 1step 1 until » do
if comp(ylikl,y3[klela)>eps them go to CC ;

comment: comp(abe,) is a function designator, the value
of which is the absolute value of the difference of the
mantissae of @ and b, after the exponents of these quan-
tities have been made equal to the largest of the exponent:;
of the originally given parameters ab,c
z :=23 ; if out then go to DD ;
for k := 1step 1 until n do yik] := y3{k] ;
if s=5 then begins :=0 ; H :=2XHendif ;
s :=s+1 ; goto AA ;
CC: H := 05XH ; out:= false ; zl := 12 ;
for k := 1step 1 until n do yl[k) := y2[k)
go to BB ;
DD :for k := 1 step 1 until n do yE{k) := y3[k]
end RK =

b

ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS AND SYNTACTIC UNITS

All references are given through section numbers. The references are given in three groups:
def Following the abbreviation “def”, reference to the syntactic definition (if any) is given.
synt Following the abbreviation ‘‘synt’’, references to the occurrences in metalinguistic formulae are given. Refer-
ences already quoted in the def-group are not repeated.
text Following the word “text”, the references to definitions given in the text are given.
The basic symbolsrepresented by signs other than underlined words [intypewritten copy; boldface in printed copy — Ed.]

have been collected at the beginning.
The examples have been ignored in compiling the index.

+, see: plus

— ,8€ee: minus

X, see: multiply

/, = ,see: divide

1, see: exponentiation

<, =<,=,2Z,>,#,sce: (relational operator)
=, 5, \V, A, —, see: {ogical operator)
,, 8ee: commuy

., see: decimal point

10, see: ten

I, see: coulon

;» see: semicolon

1=, see: colon equal

U, sec: space

(), see: parentheses

[], see: subscript brackets

‘7, see: string quotes

(actual parameter), def 3.2.1, 4.7.1

{actual parameter list), def 3.2.1, 4.7.1

(actual parameter part), def 3.2.1, 4.7.1

(adding operator), tlef 3.3.1

alphabet, text 2.1

arithmetice, text 3.3.6

(arithmetic expression), tlef 3.3.1 synt 3, 3.1.1, 3.3.1, 3.4.1, 4.2.1,
4.6.1, 5.2.1 text 3.3.3

(artthmetic operator), def 2.3 text 3.3.4

array,syvnt 2.3, 5.2.1, 54.1

array, text 3.1.4.1

(array declaration), def 5.2.1 synt 5 text 5.2.3

(array identifier), tef 3.1.1 synt 3.2.1.4.7.1, 5.2.1 text 2.

(array list), def 5.2.1

(array segment), def 521

(assignment statement), tlef 4.2.1 synt 4.1.1 test 1, 4.2.

(basic statement), def 4.1.1 synt 4.5.1
(basic symbol), def 2

begin, svnt 2.3, 4.1.1

(hlock, def 4.1.1 svnt 4.5.1 text 1, 4.1.3, 5
(block head), def 4.1.1

Boolean, syut 2.3, 5.1.1 text 5.1.3

16 Communications of the ACM

(Boolean expression), def 3.4.1 synt 3, 3.3.1, 4.2.1,4.5.1, 4.6.1 te:
343

(Boolean factor), def 3.4.1

(Boolean primary), dcf 3.4.1

(Boolean secondary), def 3.4.1

(Boolean term), def 34.1

(bound pair), def 5.2.1

(bound pair list), def 5.2.1

(bracket), def 2.3

(code),synt 5.4.1text, 4.7.8, 54.6

colon :, synt 2.3,3.2.1,4.1.1, 4.5.1, 4.6.1, 4.7.1, 5.2.1

colon equal :=,synt 2.3, 4.2.1, 4.6.1, 5.3.1

commu, ,synt. 2.3,3.1.1,3.2.1,4.6.1,4.7.1,5.1.1, 5.2.1,5.3.1, 6.4.
comment, svnt 2.3

comment convention, text 2.3

(compound statement), def 4.1.1 synt 4.5.1 text 1

(compound tail }, def 4.1.1

{conditional statement), def 4.5.1 synt. 4.1.1 test, 4.5.3

{dectmal fraction), def 2.5.1

(decimal number), def 2.5.1 text 2.5.3

decimal point ., synt 2.3, 2.5.1

(declaration), def 5 synt 4.1.1 text 1,5 (complete section)
(declarator), def 2.3

(delimiter), def 2.3 synt 2

{designational expression), def 3.5.1 svnt 3,4.3.1.,5.3.1 text 3.5
(digit), def 2.2.1 synt 2, 2.4.1, 2.5.1

dimension, text 5.2.3.2

divide / =, synt 2.3,3.3.1 text 3.3.4.2

do, synt 2.3,4.6.1

(dummy statement), def 4.4.1 synt 4.1.1 text 4.4.3

else, synt 2.3, 3.3.1, 3.4.1, 3.5.1, 4.5.1 text 4.5.3.2
(empty), def 1.1 svnt 2.6.1, 3.2.1,4.4.1,4.7.1, 5.4.1
end, synt 2.3, 4.1.]

entier, text 3.2.5
exponentiation *

Tosvnt 2.3, 3.3.1 text 3.3.4.3
(exponent part), def 2.5.1 text 2.5.3

expression), def 3 svnt 32,10 470 text 3 (complete seetion

(. ror, def 3.3.1

fo e, sybb 2.2.2

foe. synt 2.3, 461

{for clause), tlef 4.6.1 toxt 4.6.3

(for list}, def 4.6.1 text 6.4

(for list element)) def 461 text L4, L6442 4643

(formul parameter), def 5.4 text 5.4.3

(formal parameter list >, def 5.4.1

(formal parameter part, def 5.4.1

(for statement), tlef +.6.1 synt 4.1.1, 451 test 4.6 (complete
section)

{finction designator), def 3.2.1 synt 3.3.1, 3. 4.1 text 3.2.3, 5.4.4

@0 to, synt 2.3, £3.1
(go to statement j, del 430 synt £.1.1 test 4.3.3

lentifier), def 2.4.1 synt 3.1.1, 3.2.1, 3.5.1, 5.4.1 text 2.4.3
jentifier list), def 5.4.1

£, synt 2.3, R3.1, 4.5.1

P elause), def 3.3.1, £.5.1 synt 3.4.1, 3.5.1 text 3.3.3, £.5.3.2
P statement j, def 4£.5.1 text 4.5.3.1

nplication), def 3.4.1

nteger, synt 2.3, 5.1.1 text 5.1.3

weger -, clef 2.5.1 text 2.5.4

abel, synt 2.3, 5.4.1

wbely, def 3.5.1 synt £.1.1, £5.0, 4.6.1 text I, 41.3
oft part), def 4.2.1

xft part list), def 4.2.1

stter), def 2.1 synt 2, 24.1, 3.2.1, 1.7.1

stter string), tlef 3.2.1, 4.7.1

seal, text 4.1.3

seal or own type), def 5.1.1 synt 5.2.1

sgical operator), tlef 2.3 syat 3.4.1 text 3.4.5
wienl value), tlef 2.2." synt 2, 3.4.1

ywer bound), def 5.2.1 text 5.2.4

inus —, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
wltiply X, synt 2.3, 3.3.1 tcxt 3.3.4.1
wltiplying operator), dcf 3.3.1

onlocal, text 4.1.3
umber), def 2.5.1 text 2.5.3, 254

pen string), def 2.6.1
perator), def 2.3
wn, synt 2.3, 5.1.1 text 5, 525

arameter delimiter), def 3.2.1, 4.7.1 synt 5.4.1 text 4.7.7

arentheses (), synt 2.3, 321, 331, 341, 351, 471, 54.1
text 3.3.5.2

1\3s +, synt 2.3, 251, 3.3.1 text 3.34.1

rimary), def 3.3.1

rocedure, synt 2.3, 5.4.1

rocedure body), def 5.4.1

' rocedure declaration), def 54.1 synt 5 text 54.3

- tocedure heading), def 54.1 text 5.4.3

rocedure jdentifier) def 3.2.1 synt 3.2.1, 471, 541 text 4.7.5.4

rocedure statement), def 4.7.1 synt 4.1.1 text 4.7.3

rogram), def 4.1.1 text 1

nrene string), def 2.6.1

(uantity, text 2.7

REVISED ALGOL 60

real, syt 2.3, 5,11 text 5.1.3

{relation>, def 3.4.1 vext 3.4.5

Jrelational operatory, def 2.3, 3041

scope, text 2.7

semicolon 5, svnt 2.3, 41,0, 5.4.1

(separator), def 2.3

(sequential operator), def 2.3

(stmple arithmetic expression’, def 3.3.1 text 3.3.3

wimple Boolean), def 3.4.1

(simple designational expression), def 3.5.1

(simple variable), def 3.1.1 svnt 53.1.1 text 243

space u, synt 2.3 text 2.3, 2.6.3

{(specification part), def 5.1.1 text 5.4.5

{specificator), def 2.3

(specifier), det 5.4.1

standard funetion, text 3.2.4, 3.2.5

(statement), def +.1.1, synt +.5.1, 4.6.1, 5.4.1 text 4 (complete
section)

statement bracket, see: begin end

step, synt 2.3, 4.6.1 text 4.6.4.2

string, synt 2.3, 5.4.1

(string), def 2.6.1 synt 3.2.1, +.7.1 text 2.6.3

string quotes * 7, synt 2.3, 2.6.1, text 2.6.3

subseript, text 3.1.4.1

subseript bound, text 5.2.3.1

subscript brackets [], synt 2.3, 3.1.1, 3.5.1, 5.2.1

(subscripted variable), def 3.1.1 text 3.1.4.1

(subscript expression), def 3.1.1 synt 3.5.1

(subscript list), def 3.1.1

successor, text -4

switch, synt 2.3, 5.3.1, 5.¢.1

(switch declaration), def 5.3.1 synt 5 text 5.3.3

(switch designator), def 3.5.1 text 3.5.3

(switch identifier), def 3.5.1 synt 3.2.1, +.7.1, 5.3.1

(switch list), def 5.3.1

(term), def 3.3.1

ten w, synt 2.3, 2.5.1

then, synt 2.3, 3.3.1, 4.5.1

transfer function, text 3.2.5

true, synt 2.2.2

(type), tlef 5.1.1 synt 5.4.1 text 2.8

(type declaration), def 5.1.1 synt 5 text 5.1.3
(type list), def 5.1.1

(unconditional statement), tlef 4.1 _145.1
(unlabelled basic statement), def 4.1.1
(unlabelled block), def 4.1.1

(unlabelled compound), def 4.1.1

(unsigned integer), def 2.5.1, 3.5.1
(unsigned number), def 2.5.1 synt 3.3.1
until, synt 2.3, 4.6.1 text 4.64.2

(upper bound), def 5.2.1 text 5.2.4

value, synt 2.3, 5.4.1

value, text 2.8, 3.3.3

(value part), def 5.4.1 text 4.7.3.1

(variable), def 3.1.1 synt 3.3.1, 3.4.1, 421, 4.6.1 text 3.1.3
(variable identifier), def 3.1.1

while, synt 2.3, 46.1 text 4.6.4.3

END OF THE REPORT

NOTE:

25 cts. ea.; all over 100, 10 cts. ea.

This Report is published in the Communications of the ACM, in Numerische Mathematik, and in the Computer Jour-
nal. Reproduction of this Report for any purpose is explicitly permitted; reference should be made to this issue of the
Communications and to the respective issues of Numerische Mathematik and the Computer Journal as the source.

'Reprints are available as follows from the Association for Computing Machinery, 211 East 43 Street, New York 17, N. Y.:
Single copies to individuals, no charge; Single copies to companies, 50 cts.; Multiple copies: first ten, 50 cts. ea.; next 100,

Communications of the ACM 17

