
Revised Report on the Algorithmic Language Algol 60

By

J.W. Backus, F.L. Bauer, J.Green, C. Katz, J. McCarthy
P. Naur, A.J. Perlis, H. Rutishauser, K. Samelson, B. Vauquois

J.H. Wegstein, A. van Wijngaarden, M. Woodger

Edited by

Peter Naur

Dedicated to the memory of William Turanski

Summary. The report gives a complete defining description of the
international algorithmic language Algol 60. This is a language suitable
for expressing a large class of numerical processes in a form sufficiently
concise for direct automatic translation into the language of programmed
automatic computers.
The introduction contains an account of the preparatory work leading
up to the final conference, where the language was defined. In addi-
tion the notions reference language, publication language, and hardware
representations are explained.
In the first chapter a survey of the basic constituents and features of
the language is given, and the formal notation, by which the syntactic
structure is defined, is explained.
The second chapter lists all the basic symbols, and the syntactic units
known as identifiers, numbers, and strings are defined. Further some
important notions such as quantity and value are defined.
The third chapter explains the rules for forming expressions and the
meaning of these expressions. Three different types of expressions exist:
arithmetic, Boolean (logical), and designational.
The fourth chapter describes the operational units of the language, known
as statements. The basic statements are: assignment statements (evalu-
ation of a formula), go to statements (explicit break of the sequence of
execution of statements), dummy statements, and procedure statements
(call for execution of a closed process, defined by a procedure declaration).
The formation of more complex structures, having statement charac-
ter, is explained. These include: conditional statements, for statements,
compound statements, and blocks.
In the fifth chapter the units known as declarations, serving for defining
permanent properties of the units entering into a process described in
the language, are defined.
The report ends with two detailed examples of the use of the language
and an alphabetic index of definitions.

Table of Contents

Introduction . 3

1 Structure of the language . 6

1.1 Formalism for syntactic description . 7

2 Basic symbols, identifiers, numbers, and strings. Basic concepts 8

2.1 Letters . 8

2.3 Delimiters . 9

2.4 Identifiers . 9

2.5 Numbers . 10

2.6 Strings . 10

2.7 Quantities, kinds and scopes . 11

2.8 Values and types . 11

3 Expressions . 11

3.1 Variables . 11

3.2 Function designators . 12

3.3 Arithmetic expressions . 14

3.4 Boolean expressions . 17

3.5 Designational expressions . 19

4 Statements . 20

4.1 Compound statements and blocks . 20

4.2 Assignment statements . 22

4.3 Go to statements . 23

4.4 Dummy statements . 24

4.5 Conditional statements . 24

4.6 For statements . 25

4.7 Procedure statements . 27

5 Declarations . 30

5.1 Type declarations . 30

5.2 Array declarations . 31

5.3 Switch declarations . 32

5.4 Procedure declarations . 33

Examples of procedure declarations . 36

Alphabetic index of definitions of concepts and syntactic units 38

3

Introduction

Background

After the publication12 of a preliminary report on the algorithmic language
Algol, as prepared at the conference in Zürich in 1958, much interest in the
Algol language developed.

As a result of an informal meeting held at Mainz in November 1958, about
forty interested persons from several European countries held an Algol imple-
mentation conference in Copenhagen in February 1959. A “hardware group” was
formed for working cooperatively right down to the level of the paper tape code.
This conference also led to the publication by Regnecentralen, Copenhagen, of
an Algol Bulletin, edited by Peter Naur, which served as a forum for further
discussion. During the June 1959 ICIP Conference in Paris several meetings, both
formal and informal ones, were held. These meetings revealed some misunder-
standings as to the intent of the group which was primarily responsible for the
formulation of the language, but at the same time made it clear that there exists
a wide appreciation of the effort involved. As a result of the discussions it was de-
cided to hold an international meeting in January 1959 for improving the Algol
language and preparing a final report. At a European Algol Conference in Paris
in November 1959 which was attended by about fifty people, seven European
representatives were selected to attend the January 1960 Conference, and they
represent the following organisations: Association Française de Calcul, British
Computer Society, Gesellschaft für Angewandte Mathematik und Mechanik, and
the Nederlands Rekenmachine Genootschap. The seven representatives held a
final preparatory meeting at Mainz in December 1959.

Meanwhile, in the United States, anyone who wished to suggest changes or
corrections to Algol was requested to send his comments to the Communications
of the ACM, where they were published. These comments then became the basis
of consideration for changes in the Algol language. Both the SHARE and
USE organisations established Algol working groups, and both organisations
were represented on the ACM Committee on Programming Languages. The
ACM Committee met in Washington in November 1959 and considered all
comments on Algol that had been sent to the ACM Communications. Also,
seven representatives were selected to attend the January 1960 international
conference. The seven representatives held a final preparatory meeting in Boston
in December 1959.

1 Preliminary report - International Algebraic Language, Comm. Assoc. Comp. Mach.
1, No. 12 (1958), 8.

2 Report on the Algorithmic Language Algol by the ACM Committee on Programming
Languages and the GAMM Committee on Programming, edited by A. J. Perlis and
K. Samelson, Numerische Mathematik Bd. 1, S. 41-60 (1959).

4

January 1960 Conference

The thirteen representatives3, from Denmark, England, France, Germany, Holland,
Switzerland, and the United States, conferred in Paris from January 11 to 16,
1960.

Prior to this meeting a completely new draft report was worked out from
the preliminary report and the recommendations of the preparatory meetings
by Peter Naur and the Conference adopted this new form as the basis for its
report. The Conference then proceeded to work for agreement on each item of
the report. The present report represents the union of the Committee’s concepts
and the intersection of its agreements.

April 1962 Conference [Edited by M. Woodger]

A meeting of some of the authors of Algol 60 was held on 2nd - 3rd April in
Rome, Italy, through the facilities and courtesy of the International Computation
Centre. The following were present:

Authors Advisers Observer

F. L. Bauer M. Paul W. L. van der Poel
J. Green R. Franciotti (Chairman, IFIP TC 2.1
C. Katz P. Z. Ingerman Working Group Algol)
R. Kogon (representing
J.W. Backus)
P. Naur
K. Samelson G. Seegemüller
J. H. Wegstein R.E. Utman
A. van Wijngaarden
M. Woodger P. Landin

The purpose of the meeting was to correct known errors in, attempt to eliminate
apparent ambiguities in, and otherwise clarify the Algol 60 Report. Extensions to
the language were not considered at the meeting. Various proposals for correction
and clarification that were submitted by interested parties in response to the
Questionnaire in Algol Bulletin No. 14 were used as a guide.

This report constitutes a supplement to the Algol 60 Report which should
resolve a number of difficulties therein. Not all of the questions raised concerning
the original report could be resolved. Rather than risk hastily drawn conclusions
on a number of subtle points, which might create new ambiguities, the committee
decided to report only those points which they unanimously felt could be stated
in clear and unambiguous fashion.

Questions concerned with the following areas are left for further consideration
by Working Group 2.1 of IFIP, in the expectation that current work on advanced
programming languages will lead to better resolution:

3 William Turanski of the American group was killed by an automobile just prior to
the January 1960 Conference.

5

1. Side effects of functions.
2. The call by name concept.
3. own: static or dynamic.
4. For statement: static or dynamic.
5. Conflict between specification and declaration.

The authors of the Algol 60 Report present at the Rome Conference,
being aware of the formation of a Working Group on Algol by IFIP, accepted
that any collective responsibility which they might have with respect to the
development, specification, and refinement of the Algol language will from now
on be transferred to that body.

This report has been reviewed by IFIP TC 2 on Programming Languages
in August 1962 and has been approved by the Council of the International
Federation for Information Processing.

As with the preliminary Algol report, three different levels of language are
recognized, namely a Reference Language, a Publication Language, and several
Hardware Representations.

Reference Language

1. It is the working language of the committee.
2. It is the defining language.
3. The characters are determined by ease of mutual understanding and not by

any computer limitations, coder’s notation, or pure mathematical notation.
4. It is the basic reference and guide for compiler builders.
5. It is the guide for all hardware representations.
6. It is the guide for transliterating from publication language to any locally

appropriate hardware representations.
7. The main publications of the Algol language itself will use the reference

representation.

Publication Language

1. The publication language admits variations of the reference language accord-
ing to usage of printing and handwriting (e.g. subscripts, spaces, exponents,
Greek letters).

2. It is used for stating and communicating process.
3. The characters used may be different in different countries, but univocal

correspondence with reference representation must be secured.

Hardware Representations

1. Each of these is a condensation of the reference language enforced by the
limited number of characters on the standard input equipment.

2. Each one of these uses the character set of a particular computer and is the
language accepted by a translator for that computer.

3. Each of these must by accompanied by a special set of rules for transliterating
from publication or reference language.

6

For transliteration between the reference language and a language suitable
for publications, among others, the following rules are recommended.

Reference Language Publication Language

Subscript brackets [] Lowering of the line between the brackets and
removal of the brackets.

Exponentiation ↑ Raising the exponent.
Parentheses () Any form of parentheses, brackets, braces.
Basis of ten 10 Raising of the ten and of the following integral

number, inserting of the intended multiplica-
tion sign.

Description of the reference language

Was sich überhaupt sagen läßt, läßt sich

klar sagen; und wovon man nicht reden

kann, darüber muß man schweigen.

Ludwig Wittgenstein

1 Structure of the language

As stated in the introduction, the algorithmic language has three different kinds
of representations – reference, hardware, and publication – and the development
described in the sequel is in terms of the reference representation. This means that
all objects defined within the language are represented by a given set of symbols
– and it is only in the choice of symbols that the other two representations may
differ. Structure and content must be the same for all representations.

The purpose of the algorithmic language is to describe computational pro-
cesses. The basic concept used for the description of calculating rules is the well
known arithmetic expression containing as constituents numbers, variables, and
functions. From such expressions are compounded, by applying rules of arithmetic
composition, self-contained units of the language – explicit formulae – called
assignment statements.

To show the flow of computational processes, certain non-arithmetic state-
ments and statement clauses are added which may describe e.g. alternatives,
or iterative repetitions of computing statements. Since it is necessary for the
function of the statements that one statement refers to another, statements may
be provided with labels. A sequence of statements may be enclosed between the
statement brackets begin and end to form a compound statement.

Statements are supported by declarations which are not themselves computing
instructions, but inform the translator of the existence and certain properties
of objects appearing in statements, such as the class of numbers taken on as
values by a variable, the dimension of an array of numbers, or even the set of
rules defining a function. A sequence of declarations followed by a sequence of

7

statements and enclosed between begin and end constitutes a block. Every
declaration appears in a block in this way and is valid only for that block.

A program is a block or compound statement which is not contained within
another statement and which makes no use of other statements not contained
within it.

In the sequel the syntax and semantics of the language will be given4.

1.1 Formalism for syntactic description

The syntax will be described with the aid of metalinguistic formulae5. Their
interpretation is best explained by an example:

〈ab〉 ::= (| [| 〈ab〉(| 〈ab〉〈d〉

Sequences of characters enclosed in the bracket 〈〉 represent metalinguistic vari-
ables whose values are sequences of symbols. The marks ::= and | (the latter
with the meaning of or) are metalinguistic connectives. Any mark in a formula,
which is not a variable or a connective, denotes itself (or the class of marks which
are similar to it). Juxtaposition of marks and/or variables in a formula signifies
juxtaposition of the sequences denoted. Thus the formula above gives a recursive
rule for the formation of values of the variable 〈ab〉. It indicates that 〈ab〉 may
have the value (or [or that given some legitimate value of 〈ab〉, another may be
formed by following it with the character (or by following it with some value of
the variable 〈d〉. If the values of 〈d〉 are the decimal digits, some values of 〈ab〉
are:

[(((1(37(

(12345(

(((

[86

In order to facilitate the study, the symbols used for distinguishing the metalin-
guistic variables (i.e. the sequence of characters appearing within the brackets
〈〉 as 〈ab〉 in the above example) have been chosen to be words describing ap-
proximately the nature of the corresponding variable. Where words which have
appeared in this manner are used elsewhere in the text they will refer to the
corresponding syntactic definition. In addition some formulae have been given in
more than one place.

4 Whenever the precision of arithmetic is stated as being in general not specified, or
the outcome of a certain process is left undefined or said to be undefined, this is to be
interpreted in the sense that a program only fully defines a computational process if
the accompanying information specifies the precision assumed, the kind of arithmetic
assumed, and the course of action to be taken in all such cases as may occur during
the execution of the computation.

5 Cf. J. W. Backus, The syntax and semantics of the proposed international algebraic
language of the Zürich ACM-GRAMM conference. ICIP Paris, June 1959.

8

Definition:

〈empty〉 ::=

(i.e. the null string of symbols).

2 Basic symbols, identifiers, numbers, and strings.
Basic concepts

The reference language is built up from the following basic symbols:

〈basic symbol〉 ::= 〈letter〉 | 〈digit〉 | 〈logical value〉 | 〈delimiter〉

2.1 Letters

〈letter〉 ::=a|b|c|d|e|f |g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z|
A|B|C|D|E|F |G|H|I|J |K|L|M |N |O|P |Q|R|S|T |U |V |W |X|Y |Z

This alphabet may be arbitrarily restricted, or extended with any other distinctive
character (i.e. character not coinciding with any digit, logical value or delimiter).

Letters do not have individual meaning. They are used for forming identifiers
and strings6 (cf. sections 2.4. Identifiers, 2.6. Strings).

2.2.1 Digits.

〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Digits are used for forming numbers, identifiers, and strings.

2.2.2 Logical values.

〈logical value〉 ::= true | false

The logical values have a fixed obvious meaning.

6 It should be particularly noted that throughout the reference language underlining [in
typewritten copy; boldface type in printed copy – Ed.] is used for defining independent
basic symbols (see sections 2.2.2 and 2.3). These are understood to have no relation
to the individual letters of which they are composed. Within the present report
[not including headings – Ed.] underlining [boldface – Ed.] will be used for no other
purpose.

9

2.3 Delimiters

〈delimiter〉 ::= 〈operator〉 | 〈separator〉 | 〈bracket〉 | 〈declarator〉 | 〈specificator〉
〈operator〉 ::= 〈arithmetic operator〉 | 〈relational operator〉 | 〈logical operator〉 |
〈sequential operator〉

〈arithmetic operator〉 ::= + | − | × | / | ÷ | ↑
〈relational operator〉 ::= < | ≤ | = | ≥ | > | 6=
〈logical operator〉 ::= ≡ | ⊃ | ∨ | ∧ | ¬
〈sequential operator〉 ::= go to | if | then | else | for | do7

〈separator〉 ::= , | . | 10 | : | ; | := | | step | until | while | comment

〈bracket〉 ::= (|) | [|] | ‘ | ’ | begin | end

〈declarator〉 ::= own | Boolean | integer | real | array | switch | procedure

〈specificator〉 ::= string | label | value

Delimiters have a fixed meaning which for the most part is obvious or else
will be given at the appropriate place in the sequel.

Typographical features such as blank space or change to a new line have no
significance in the reference language. They may, however, be used freely for
facilitating reading.

For the purpose of including text among the symbols of a program the follow-
ing “comment” conventions hold:

The sequence of basic symbols: is equivalent to

; comment 〈any sequence not containing ; 〉; ;
begin comment 〈any sequence not containing ; 〉; begin
end 〈any sequence not containing end or ; or else〉 end

By equivalence is here meant that any of the three structures shown in the left
hand column may be replaced, in any occurrence outside of strings, by the symbol
shown in the same line in the right hand column without any effect on the action
of the program. It is further understood that the comment structure encountered
first in the text when reading from left to right has precedence in being replaced
over later structures contained in the sequence.

2.4 Identifiers

2.4.1 Syntax.

〈identifier〉 ::= 〈letter〉 | 〈identifier〉〈letter〉 | 〈identifier〉〈digit〉

2.4.2 Examples. q

Soup

V 17a

a34kTMNs

MARILY N

10

2.4.3 Semantics. Identifiers have no inherent meaning, but serve for the
identification of simple variables, arrays, labels, switches, and procedures. They
may be chosen freely (cf. however section 3.2.4. Standard functions).

The same identifiers cannot be used to denote two different quantities except
when these quantities have disjoint scopes as defined by the declarations of the
program (cf. section 2.7. Quantities, kinds and scopes and section 5. Declarations).

2.5 Numbers

2.5.1 Syntax.

〈unsigned integer〉 ::= 〈digit〉 | 〈unsigned integer〉〈digit〉
〈integer〉 ::= 〈unsigned integer〉 | + 〈unsigned integer〉 | − 〈unsigned integer〉
〈decimal fraction〉 ::= .〈unsigned integer〉
〈exponential part〉 ::= 10〈integer〉
〈decimal number〉 ::= 〈unsigned integer〉 | 〈decimal fraction〉 |
〈unsigned integer〉〈decimal fraction〉

〈unsigned number〉 ::= 〈decimal number〉 | 〈exponential part〉 |
〈decimal number〉〈exponential part〉

〈number〉 ::= 〈unsigned number〉 | + 〈unsigned number〉 | − 〈unsigned number〉

2.5.2 Examples. 0 −200.084 −.08310 − 02

177 +07.43108 −107

.5384 9.3410 + 10 10 − 4

+0.7300 210 − 4 +10 + 5

2.5.3 Semantics. Decimal numbers have their conventional meaning. The
exponent part is scale factor expressed as an integral power of 10.

2.5.4 Types. Integers are of the type integer. All other numbers are of type
real (cf. section 5.1 Type declarations).

2.6 Strings

2.6.1 Syntax.

〈proper string〉 ::= 〈any sequence of symbols not containing ‘or’ 〉 | 〈empty〉
〈open string〉 ::= 〈proper string〉‘〈open string〉’ | 〈open string〉〈open string〉
〈string〉 ::= ‘〈open string〉’

2.6.2 Examples. ‘5k, ,−‘[[[‘ ∧ = / : ’Tt’’

‘This is a ‘string’’

11

2.6.3 Semantics. In order to enable the language to handle arbitrary se-
quences of basic symbols the string quotes ‘ and ’ are introduced. The symbol

denotes a space. It has no significance outside strings. Strings are used as
actual parameters of procedures (cf. sections 3.2. Function designators and 4.7.
Procedure Statements).

2.7 Quantities, kinds and scopes

The following kinds of quantities are distinguished: simple variables, arrays, labels,
switches, and procedures.

The scope of a quantity is the set of statements and expressions in which the
declaration of the identifier associated with that quantity is valid. For labels see
section 4.1.3.

2.8 Values and types

A value is an ordered set of numbers (special case: a single number), an ordered
set of logical values (special case: a single logical value), or a label.

Certain of the syntactic units are said to possess values. These values will in
general change during the execution of the program The values of expressions
and their constituents are defined in section 3. The value of an array identifier is
the ordered set of values of the corresponding array of subscripted variables (cf.
section 3.1.4.1).

The various “types” (integer, real, Boolean) basically denote properties
of values. The types associated with syntactic units refer to the values of these
units.

3 Expressions

In the language the primary constituents of the programs describing algorithmic
processes are arithmetic, Boolean, and designational expressions. Constituents
of the expressions, except for certain delimiters, are logical values, numbers,
variables, function designators, and elementary arithmetic, relational, logical,
and sequential operators. Since the syntactic definition of both variables and
function designators contains expressions, the definition of expressions, and their
constituents, is necessarily recursive.

〈expression〉 ::= 〈arithmetic expression〉 | 〈Boolean expression〉 |
〈designational expression〉

3.1 Variables

12

3.1.1 Syntax.

〈variable identifier〉 ::= 〈identifier〉
〈simple variable〉 ::= 〈variable identifier〉
〈subscript expression〉 ::= 〈arithmetic expression〉
〈subscript list〉 ::= 〈subscript expression〉 | 〈subscript list〉, 〈subscript expression〉
〈array identifier〉 ::= 〈identifier〉
〈subscripted variable〉 ::= 〈array identifier〉[〈subscript list〉]
〈variable〉 ::= 〈simple variable〉 | 〈subscripted variable〉

3.1.2 Examples. epsilon

detA

a17

Q[7, 2]

x[sin(n× pi/2), Q[3, n, 4]]

3.1.3 Semantics. A variable is a designation given to a single value. This
value may be used in expressions for forming other values and may be changed at
will by means of assignment statements (section 4.2). The type of the value of a
particular variable is defined in the declaration for the variable itself (cf. section
5.1. Type declarations) or for the corresponding array identifier (cf. section 5.2.
Array declarations),

3.1.4 Subscripts.

3.1.4.1 Subscripted variables designate values which are components of multidi-
mensional arrays (cf. section 5.2. Array declarations). Each arithmetic expression
of the subscript list occupies one subscript position of the subscripted variable
and is called a subscript. The complete list of subscripts is enclosed in the sub-
script brackets []. The array component referred to by a subscripted variable is
specified by the actual numerical value of its subscripts (cf. section 3.3. Arithmetic
expressions).

3.1.4.2 Each subscript position acts like a variable of type integer and the
evaluation of the subscript is understood to be equivalent to an assignment to
this fictitious variable (cf. section 4.2.4). The value of the subscripted variable
is defined only if the value of the subscript expression is within the subscript
bounds of the array (cf. section 5.2. Array declarations).

3.2 Function designators

13

3.2.1 Syntax.

〈procedure identifier〉 ::= 〈identifier〉
〈actual parameter〉 ::= 〈string〉 | 〈expression〉 | 〈array identifier〉 |
〈switch identifier〉 | 〈procedure identifier〉

〈letter string〉 ::= 〈letter〉 | 〈letter string〉〈letter〉
〈parameter delimiter〉 ::= , |)〈letter string〉 : (

〈actual parameter list〉 ::= 〈actual parameter〉 |
〈actual parameter list〉〈parameter delimiter〉〈actual parameter〉

〈actual parameter part〉 ::= 〈empty〉 | (〈actual parameter list〉)
〈function designator〉 ::= 〈procedure identifier〉〈actual parameter part〉

3.2.2 Examples. sin(a− b)

J(v + s, n)

R

S(s− 5) Temperature : (T) Pressure : (P)

Compile(‘ := ’) Stack : (Q)

3.2.3 Semantics. Function designators define single numerical or logical val-
ues which result through the application of given sets of rules defined by a
procedure declaration (cf. section 5.4. Procedure declarations) to fixed sets of
actual parameters. The rules governing specification of actual parameters are
given in section 4.7. Procedure statements. Not every procedure declaration
defines the value of a function designator.

3.2.4 Standard functions. Certain identifiers should be reserved for the
standard functions of analysis, which will be expressed as procedures. It is
recommended that this reserved list should contain:

abs(E) for the modulus (absolute value) of the value of the

expression E

sign(E) for the sign of the value of E (+1 for E > 0, 0 for E = 0, −1

for E < 0)

sqrt(E) for the square root of the value of E

sin(E) for the sine of the value of E

cos(E) for the cosine of the value of E

arctan(E) for the principal value of the arctangent of the value of E

ln(E) for the natural logarithm of the value of E

exp(E) for the exponential function of the value of E (eE)

14

These functions are all understood to operate indifferently on arguments both
of type real and integer. They will all yield values of type real, except for
sign(E) which will have values of type integer. In a particular representation
these function may be available without explicit declarations (cf. section 5.
Declarations).

3.2.5 Transfer functions. It is understood that transfer functions between
any pair of quantities and expressions my be defined. Among the standard
functions it is recommended that there be one, namely

entier(E),

which “transfers” an expression of real type to one of integer type, and assigns
to it the value which is the largest integer not greater than the value of E.

3.3 Arithmetic expressions

3.3.1 Syntax.

〈adding operator〉 ::= + | −
〈multiplying operator〉 ::= × | / | ÷
〈primary〉 ::= 〈unsigned number〉 | 〈variable〉 | 〈function designator〉 |

(〈arithmetic expression〉)
〈factor〉 ::= 〈primary〉 | 〈factor〉 ↑ 〈primary〉
〈term〉 ::= 〈factor〉 | 〈term〉〈multiplying operator〉〈factor〉
〈simple arithmetic expression〉 ::= 〈term〉 | 〈adding operator〉〈term〉 |
〈simple arithmetic expression〉〈adding operator〉〈term〉

〈if clause〉 ::= if 〈Boolean expression〉 then

〈arithmetic expression〉 ::= 〈simple arithmetic expression〉 |
〈if clause〉〈simple arithmetic expression〉 else 〈arithmetic expression〉

3.3.2 Examples.

Primaries:

7.39410 − 8

sum

w[i + 2, 8]

cos(y + z × 3)

(a− 3/y + vu ↑ 8)

15

Factors:

omega

sum ↑ cos(y + z × 3)

7.39410 − 8 ↑ w[i + 2, 8] ↑ (a− 3/y + vu ↑ 8)

Terms:

U

omega× sum ↑ cos(y + z × 3)/7.39410 − 8 ↑ w[i + 2, 8] ↑ (a− 3/y + vu ↑ 8)

Simple arithmetic expression:

U − Y u + omega× sum ↑ cos(y + z × 3)/7.39410 − 8 ↑ w[i + 2, 8] ↑ (a− 3/y + vu ↑ 8)

Arithmetic expressions:

w × u−Q(S + Cu) ↑ 2

if q > 0 then S + 3×Q/A else 2× S + 3× q

if a < 0 then U + V else if a× b > 17 then U/V else if k 6= y then V/U else 0

a× sin(omega× t)

0.571012× a[N × (N − 1)/2, 0]

(A× arctan(y) + Z) ↑ (7 + Q)

if q then n− 1 else n

if a < 0 then A/B else if b = 0 then B/A else z

3.3.3 Semantics. An arithmetic expression is a rule for computing a numerical
value. In case of simple arithmetic expressions this value is obtained by executing
the indicated arithmetic operations on the actual numerical values of the primaries
of the expression, as explained in detail in section 3.3.4 below. The actual
numerical value for a primary is obvious in the case of numbers. For variables
it is the current value (assigned last in the dynamic sense), and for function
designators it is the value arising from the computing rules defining the procedure
(cf. section 5.4.4. Values of function designators) when applied to the current
values of the procedure parameters given in the expression. Finally, for arithmetic
expressions enclosed in parentheses the value must through a recursive analysis
be expressed in terms of the values of primaries of the other three kinds.

In the more general arithmetic expression, which include if clauses, one out of
several simple arithmetic expressions is selected on the basis of the actual values
of the Boolean expression (cf. section 3.4. Boolean expressions). This selection is
made as follows: The Boolean expressions of the if clauses are evaluated one by
one in the sequence from left to right until one having the value true is found.
The value of the arithmetic expression is then the value of the first arithmetic

16

expression following this Boolean (the largest arithmetic expression found in this
position is understood). The construction:

else 〈simple arithmetic expression〉

is equivalent to the construction:

else if true then 〈simple arithmetic expression〉

3.3.4 Operators and types. Apart from the Boolean expressions of if clauses,
the constituents of simple arithmetic expressions must be of types real or integer
(cf. section 5.1. Type declarations). The meaning of the basic operators and the
types of the expressions to which they lead are given by the following rules:

3.3.4.1 The operators +, −, and × have the conventional meaning (addition,
subtraction, and multiplication). The type of the expression will be integer if
both of the operands are of integer type, otherwise real.

3.3.4.2 The operations 〈term〉/〈factor〉 and 〈term〉 ÷ 〈factor〉 both denote
division, to be understood as a multiplication of the term by the reciprocal of
the factor with due regard to the rules of precedence (cf. section 3.3.5). Thus for
example

a/b× 7/(p− q)× v/s

means

((((a× (b−1))× 7)× ((p− q)−1))× v)× (s−1)

The operator / is defined for all four combinations of types real and integer and
will yield results of real type in any case. The operator ÷ is defined only for two
operands of type integer and will yield a result of type integer, mathematically
defined as follows:

a÷ b = sign(a/b)× entier(abs(a/b))

(cf. sections 3.2.4 and 3.2.5).

3.3.4.3 The operation 〈factor〉 ↑ 〈factor〉 denotes exponentiation, where the
factor is the base and the primary is the exponent. Thus for example

2 ↑ n ↑ k means (2n)k

while

2 ↑ (n ↑ m) means 2(n
m)

17

Writing i for a number of integer type, r for a number of real type, and a for a
number of either integer or real type, the result is given by the following rules:

a ↑ i if i > 0: a× a× ...× a (i times), of the same type as a.

if i = 0: if a 6= 0: 1, of the same type as a.

if a = 0: undefined.

if i < 0, if a 6= 0: 1/(a× a× a× ...× a) (the denominator has

−i factors), of type real.

if a = 0: undefined.

a ↑ r if a > 0: exp(r × ln(a)), of type real.

if a = 0, if r > 0: 0.0, of type real.

if r ≤ 0: undefined.

if a < 0: always undefined.

3.3.5 Precedence of operators. The sequence of operations within one
expression is generally from left to right, with the following additional rules:

3.3.5.1 According to the syntax given in section 3.3.1 the following rules of
precedence hold:

first: ↑
second: ×/÷
third: +−

3.3.5.2 The expression between a left parenthesis and the matching right
parenthesis is evaluated by itself and this value is used in subsequent calculations.
Consequently the desired order of execution of operations within an expression
can always be arranged by appropriate positioning of parenthesis.

3.3.6 Arithmetics of real quantities. Numbers and variables of type real
must be interpreted in the sense of numerical analysis, i.e. as entities defined
inherently with only a finite accuracy. Similarly, the possibility of the occurrence
of a finite deviation from the mathematically defined result in any arithmetic
expression is explicitly understood. No exact arithmetic will be specified, however,
and it is indeed understood that different hardware representations may evaluate
arithmetic expressions differently. The control of the possible consequences of
such differences must be carried out by the methods of numerical analysis. This
control must be considered a part of the process to be described, and will therefore
be expressed in terms of the language itself.

3.4 Boolean expressions

18

3.4.1 Syntax.

〈relational operator〉 ::= < | ≤ | = | ≥ | > | 6=
〈relation〉 ::= 〈simple arithmetic expression〉〈relational operator〉

〈simple arithmetic expression〉
〈Boolean primary〉 ::= 〈logical value〉 | 〈variable〉 | 〈function designator〉 |
〈relation〉 | (〈Boolean expression〉)

〈Boolean secondary〉 ::= 〈Boolean primary〉 | ¬〈Boolean primary〉
〈Boolean factor〉 ::= 〈Boolean secondary〉 |
〈Boolean factor〉 ∧ 〈Boolean secondary〉

〈Boolean term〉 ::= 〈Boolean factor〉 | 〈Boolean term〉 ∨ 〈Boolean factor〉
〈implication〉 ::= 〈Boolean term〉 | 〈implication〉 ⊃ 〈Boolean term〉
〈simple Boolean〉 ::= 〈implication〉 | 〈simple Boolean〉 ≡ 〈implication〉
〈Boolean expression〉 ::= 〈simple Boolean〉 |

〈if clause〉〈simple Boolean〉 else 〈Boolean expression〉

3.4.2 Examples. x = −2

Y > V ∨ z < q

a + b > −5 ∧ z − d > q ↑ 2

p ∧ q ∨ x 6= y

g ≡ ¬a ∧ b ∧ ¬c ∨ d ∨ e ⊃ ¬f
if k < 1 then s < w else h ≤ c

if if if a then b else c then d else f then g else h < k

3.4.3 Semantics. A Boolean expression is a rule for computing a logical value.
The principles of evaluation are entirely analogous to those given for arithmetic
expressions in section 3.3.3.

3.4.4 Types. Variables and function designators entered as Boolean primaries
must be declared Boolean (cf. section 5.1. Type declarations and section 5.4.4.
Value of function designators).

3.4.5 The operators. Relations take on the value true whenever the corre-
sponding relation is satisfied for the expressions involved, otherwise false.

The meaning of the logical operators ¬ (not), ∧ (and), ∨ (or), ⊃ (implies),
and ≡ (equivalent), is given by the following function table.

19

b1 false false true true
b2 false true false true
¬b1 true true false false
b1 ∧ b2 false false false true
b1 ∨ b2 false true true true
b1 ⊃ b2 true true false true
b1 ≡ b2 true false false true

3.4.6 Precedence of operators. The sequence of operations within one
expression is generally from left to right, with the following additional rules:

3.4.6.1 According to the syntax given in section 3.4.1 the following rules of
precedence hold:

first: arithmetic expressions according to section 3.3.5.
second: < ≤ = ≥ > 6=
third: ¬
fourth: ∧
fifth: ∨
sixth: ⊃
seventh: ≡

3.4.6.2 The use of parentheses will be interpreted in the sense given in section
3.3.5.2.

3.5 Designational expressions

3.5.1 Syntax.

〈label〉 ::= 〈identifier〉 | 〈unsigned integer〉
〈switch identifier〉 ::= 〈identifier〉
〈switch designator〉 ::= 〈switch identifier〉[〈subscript expression〉]
〈simple designational expression〉 ::= 〈label〉 | 〈switch designator〉 |

(〈designational expression〉)
〈designational expression〉 ::= 〈simple designational expression〉 |
〈if clause〉〈simple designational expression〉else〈designational expression〉

3.5.2 Examples. 17

p9

Choose[n− 1]

Town[if y < 0 then N else N + 1]

if Ab < c then 17 else q[if w ≤ 0 then 2 else n]

20

3.5.3 Semantics. A designational expression is a rule for obtaining a label of
a statement (cf. section 4. Statements). Again the principle of the evaluation is
entirely analogous to that of arithmetic expressions (section 3.3.3). In the general
case the Boolean expression of the if clauses will select a simple designational
expression. If this is a label the desired result is already found. A switch designator
refers to the corresponding switch declaration (cf. section 5.3. Switch declarations)
and by the actual numerical value of its subscript expression selects one of the
designational expressions listed in the switch declaration by counting these from
left to right. Since the designational expression thus selected may again be a
switch designator this evaluation is obviously a recursive process.

3.5.4 The subscript expression. The evaluation of the subscript expression
is analogous to that of subscripted variables (cf. section 3.1.4.2). The value of a
switch designator is defined only if the subscript expression assumes one of the
positive values 1, 2, 3, ..., n, where n is the number of entries in the switch list.

3.5.5 Unsigned integers as labels. Unsigned integers used as labels have
the property that leading zeroes do not affect their meaning, e.g. 00127 denotes
the same label as 217.

4 Statements

The units of operation within the language are called statements. They will nor-
mally be executed consecutively as written. However, this sequence of operations
may be broken by go to statements, which define their successor explicitly, and
shortened by conditional statements, which may cause certain statements to be
skipped.

In order to make it possible to define a specific dynamic succession, statements
may be provided with labels.

Since sequences of statements may be grouped together into compound state-
ments and blocks the definition of statement must necessarily be recursive. Also
since declarations, described in section 5, enter fundamentally into the syntactic
structure, the syntactic definition of statements must suppose declarations to be
already defined.

4.1 Compound statements and blocks

4.1.1 Syntax.

〈unlabelled basic statement〉 ::= 〈assignment statement〉 | 〈go to statement〉 |
〈dummy statement〉 | 〈procedure statement〉

〈basic statement〉 ::= 〈unlabelled basic statement〉 | 〈label〉 : 〈basic statement〉
〈statement〉 ::= 〈unconditional statement〉 | 〈conditional statement〉 |
〈for statement〉

〈compound tail〉 ::= 〈statement〉end | 〈statement〉; 〈compound tail〉

21

〈block head〉 ::= begin〈declaration〉 | 〈block head〉; 〈declaration〉
〈unlabelled compound〉 ::= begin〈compound tail〉
〈compound statement〉 ::= 〈unlabelled compound〉 |

〈label〉 : 〈compound statement〉
〈block〉 ::= 〈unlabelled block〉 | 〈label〉 : 〈block〉
〈program〉 ::= 〈block〉 | 〈compound statement〉

This syntax may be illustrated as follows: Denoting arbitrary statements, decla-
rations, and labels, by the letters S, D, L, respectively, the basic syntactic units
take the forms:
Compound statement:

L : L : ... begin S;S; ...S;S end

Block:

L : L : ... begin D;D; ..D;S;S; ...S;S end

It should by kept in mind that each of the statements S may again be a complete
compound statement or a block.

4.1.2 Examples.

Basic statements:

a := p + q

go to Naples

Start : Continue : W := 7.993

Compound statements:

begin x := 0; for y := 1 step 1 until n do x := x + A[y];

if x > q then go to STOP else if x > w − 2 then go to S;

Aw : St : W := x + bob end

Block:

Q : begin integer i, k; real w;

for i := 1 step 1 until m do

for k := i + 1 step 1 until m do

begin w := A[i, k];

A[i, k] := A[k, i];

A[k, i] := w end foriandk

end blockQ

22

4.1.3 Semantics. Every block automatically introduces a new level of nomen-
clature. This is realized as follows: Any identifier occurring within the block may
through a suitable declaration (cf. section 5. Declarations) be specified to be
local to the block in question. This means (a) that the entity represented by this
identifier inside the blocks has no existence outside it and (b) that any entity
represented by this identifier outside the block is completely inaccessible inside
the block.

Identifiers (except those representing labels) occurring within a block and
not being declared to this block will be non-local to it, i.e. will represent the
same entity inside the block and in the level immediately outside it. A label
separated by a colon from a statement, i.e. labelling that statement, behaves as
though declared in the head of the smallest embracing block, i.e. the smallest
block whose brackets begin and end enclose that statement. In this context a
procedure body must be considered as if it were enclosed by begin and end and
treated as a block.

Since a statement of a block may again itself be a block the concepts local and
non-local to a block must be understood recursively. Thus an identifier, which is
non-local to a block A, may or may not be non-local to the block B in which A
is one statement.

4.2 Assignment statements

4.2.1 Syntax.

〈left part〉 ::= 〈variable〉 := | 〈procedure identifier〉 :=

〈left part list〉 ::= 〈left part〉 | 〈left part list〉〈left part〉
〈assignment statement〉 ::= 〈left part list〉〈arithmetic expression〉 |

〈left part list〉〈Boolean expression〉

4.2.2 Examples. s := p[0] := n := n + 1 + s

n := n + 1

A := B/C − v − q × S

S[v, k + 2] := 3− arctan(s× zeta)

V := Q > Y ∧ Z

4.2.3 Semantics. Assignment statements serve for assigning the value of an
expression to one or several variables or procedure identifiers. Assignment to a
procedure identifier may only occur within the body of a procedure defining the
value of a function designator (cf. section 5.4.4). The process will in the general
case be understood to take place in three steps as follows:

4.2.3.1 Any subscript expressions occurring in the left part variables are
evaluated in sequence from left to right.

23

4.2.3.2 The expression of the statement is evaluated.

4.2.3.3 The value of the expression is assigned to all the left part variables,
with any subscript expressions having values as evaluated in step 4.2.3.1.

4.2.4 Types. The type associated with all variables and procedure identifiers
of a left part list must be the same. If the type is Boolean, the expression must
likewise be Boolean. If the type is real or integer, the expression must be
arithmetic. If the type of the arithmetic expression differs from that associated
with the variables and procedure identifiers, appropriate transfer functions are
understood to be automatically invoked. For transfer from real to integer type
the transfer function is understood to yield a result equivalent to

entier(E + 0.5)

where E is the value of the expression. The type associated with a procedure
identifier is given by the declarator which appears as the first symbol of the
corresponding procedure declaration (cf. section 5.4.4).

4.3 Go to statements

4.3.1 Syntax.

〈go to statement〉 ::= go to 〈designational expression〉

4.3.2 Examples. go to 8

go to exit[n + 1]

go to Town[if y < 0 then N else N + 1]

go to ifAb < c then 17 else q[if w < 0 then 2 else n]

4.3.3 Semantics. A go to statement interrupts the normal sequence of opera-
tions, defined by the write-up of statements, by defining its successor explicitly by
the value of a designational expression. Thus the next statement to be executed
will be the one having this value as its label.

4.3.4 Restriction. Since labels are inherently local, no go to statement can
lead from outside into a block. A go to statement may, however, lead from outside
into a compound statement.

4.3.5 Go to an undefined switch designator. A go to statement is equiv-
alent to a dummy statement if the designational expression is a switch designator
whose value is undefined.

24

4.4 Dummy statements

4.4.1 Syntax.

〈dummy statement〉 ::= 〈empty〉

4.4.2 Examples.

L :

begin; John : end

4.4.3 Semantics. A dummy statement executes no operation. It may serve
to place a label.

4.5 Conditional statements

4.5.1 Syntax.

〈if clause〉 ::= if 〈Boolean expression〉 then

〈unconditional statement〉 ::= 〈basic statement〉 | 〈compound statement〉 |
〈block〉

〈if statement〉 ::= 〈if clause〉〈unconditional statement〉
〈conditional statement〉 ::= 〈if statement〉 | 〈if statement〉 else 〈statement〉 |
〈if clause〉〈for statement〉 | 〈label〉 : 〈conditional statement〉

4.5.2 Examples.

if x > 0 then n := n + 1

if s > u then V : q := n + m else go to R

if s < 0 ∨ P ≤ Q then AA : begin if q < v then a := v/s

else y := 2× a end else if v > s then a := v − q

else if v > s− 1 then go to S

4.5.3 Semantics. Conditional statements cause certain statements to be exe-
cuted or skipped depending on the running values of specified Boolean expressions.

4.5.3.1 If statement The unconditional statement of an if statement will be
executed if the Boolean expression of the if clause is true. Otherwise it will be
skipped and the operation will be continued with the next statement.

25

4.5.3.2 Conditional statement According to the syntax two different forms of
conditional statements are possible. These may be illustrated as follows:

if B1 then S1 else if B2 then S2 else S3;S4

and

if B1 then S1 else if B2 then S2 else if B3 then S3;S4

Here B1 to B3 are Boolean expressions, while S1 to S3 are unconditional state-
ments. S4 is the statement following the complete conditional statement.

The execution of a conditional statement may be described as follows: The
Boolean expressions of the if clauses are evaluated one after the other in sequence
from left to right until one yielding the value true is found. Then the unconditional
statement following this Boolean is executed. Unless this statement defines its
successor explicitly the next statement to be executed will be S4, i.e. the statement
following the complete conditional statement. Thus the effect of the delimiter
else may be described by saying that it defines the successor of the statement it
follows to be the statement following the complete conditional statement.

The construction

else 〈unconditional statement〉

is equivalent to

else if true then 〈unconditional statement〉

If none of the Boolean expressions of the if clauses is true, the effect of the
whole conditional statement will be equivalent to that of a dummy statement.

For further explanation the following picture may be useful:

– – – – – – – – – – – – – – –↑ ↑ ↓
if B1 then S1 else if B2 then S2 else S3;S4

↑ ↑ ↓ ↑
– – – – – – – – – – – – – – – – – – – –

B1 false B2 false

4.5.4 Go to into a conditional statement. The effect of a go to statement
leading into a conditional statement follows directly from the above explanation
of the effect of else.

4.6 For statements

26

4.6.1 Syntax.

〈for list element〉 ::= 〈arithmetic expression〉 |
〈arithmetic expression〉 step 〈arithmetic expression〉 until

〈arithmetic expression〉 | 〈arithmetic expression〉 while 〈Boolean expression〉
〈for list〉 ::= 〈for list element〉 | 〈for list〉, 〈for list element〉
〈for clause〉 ::= for 〈variable〉 := 〈for list〉 do

〈for statement〉 ::= 〈for clause〉〈statement〉 |
〈label〉 : 〈for statement〉

4.6.2 Examples.

for q := 1 step s until n do A[q] := B[q]

for k := 1, V 1× 2 while V 1 < N do

for j := I + G,L, 1 step 1 until N,C + D do A[k, j] := B[k, j]

4.6.3 Semantics. A for clause causes the statement S which it precedes to be
repeatedly executed zero or more times. In addition it performs a sequence of
assignments to its controlled variable. The process may be visualized by means
of the following picture:

– – – – – – – – – – –↓ ↑
Initialize; test; statement S; advance; successor

↓ ↑
– – – – – – – – – – – – – – – –

for list exhausted

In this picture the word initialize means: perform the first assignment of the
for clause. Advance means: perform the next assignment of the for clause. Test
determines if the last assignment has been done. If so, the execution continues
with the successor of the for statement. If not, the statement following the for
clause is executed.

4.6.4 The for list elements. The for list gives a rule for obtaining the values
which are consecutively assigned to the controlled variable. This sequence of
values is obtained from the for list elements by taking these one by one in order
in which they are written. The sequence of values generated by each of the three
species of for list elements and the corresponding execution of the statement S
are given by the following rules:

4.6.4.1 Arithmetic expression This element gives rise to one value, namely the
value of the given arithmetic expression as calculated immediately before the
corresponding execution of the statement S.

27

4.6.4.2 Step-until-element An element of the form A step B until C, where
A, B, and C are arithmetic expressions, gives rise to an execution which may be
described most concisely in terms of additional Algol statement as follows:

V := A

L1 : if (V − C)× sign(B) > 0 then go to Element exhausted;

Statement S;

V := V + B;

go to L1;

where V is the controlled variable of the for clause and ‘Element exhausted’
points to the evaluation according to the next element in the for list, or if the
step-until-element is the last of the list, to the next statement in the program.

4.6.4.3 While-element The execution governed by a for list element of the form
E while F, where E is an arithmetic and F a Boolean expression, is most concisely
described in terms of additional Algol statements as follows:

L3 : V := E

if ¬F then go to Element exhausted;

Statement S;

go to L3;

where the notation is the same as in 4.6.4.2 above.

4.6.5 The value of the controlled variable upon exit. Upon exit out of
the statement S (supposed to be compound) through a go to statement the value
of the controlled variable will be the same as it was immediately preceding the
execution of the go to statement.

If the exit is due to exhaustion of the for list, on the other hand, the value of
the controlled variable is undefined after the exit.

4.6.6 Go to leading into a for statement. The effect of a go to statement,
outside a for statement, which refers to a label within the for statement, is
undefined.

4.7 Procedure statements

4.7.1 Syntax.

〈actual parameter〉 ::= 〈string〉 | 〈expression〉 | 〈array identifier〉 |
〈switch identifier〉 | 〈procedure identifier〉

28

〈letter string〉 ::= 〈letter〉 | 〈letter string〉〈letter〉
〈parameter delimiter〉 ::=, |)〈letter string〉 : (

〈actual parameter list〉 ::= 〈actual parameter〉 |
〈actual parameter list〉〈parameter delimiter〉〈actual parameter〉

〈actual parameter part〉 ::= 〈empty〉 | (〈actual parameter list〉)
〈procedure statement〉 ::= 〈procedure identifier〉〈actual parameter part〉

4.7.2 Examples. Spur(A) Order : (7) Result to : (V)

Transpose(W, v + 1)

Absmax(A,N,M, Y y, I,K)

Innerproduct(A[t, P, u], B[P], 10, P, Y)

These examples correspond to examples given in section 5.4.2.

4.7.3 Semantics. A procedure statement serves to invoke (call for) the exe-
cution of a procedure body (cf. section 5.4. procedure declarations). Where the
procedure body is a statement written in Algol the effect of this execution will
be equivalent to the effect of performing the following operations on the program
at the time of execution of the procedure statement.

4.7.3.1 Value assignment (call by value). All formal parameters quoted in the
value part of the procedure declaration heading are assigned the values (cf. section
2.8. Values and types) of the corresponding actual parameters, these assignments
being considered as being performed explicitly before entering the procedure body.
The effect is as though an additional block embracing the procedure body were
created in which these assignments were made to variables local to this fictitious
block with types as given in the corresponding specifications (cf. section 5.4.5).
As a consequence, variables called by value are to be considered as nonlocal to
the body of the procedure, but local to the fictitious block (cf. section 5.4.3).

4.7.3.2 Name replacement (call by name). Any formal parameter not quoted in
the value list is replaced, throughout the procedure body, by the corresponding
actual parameter, after enclosing this latter in parentheses wherever syntactically
possible. Possible conflicts between identifiers inserted through this process and
other identifiers already present within the procedure body will be avoided by
suitable systematic changes of the formal or local identifiers involved.

4.7.3.3 Body replacement and execution. Finally the procedure body, modified
as above, is inserted in place of the procedure statement and executed. If the
procedure is called from a place outside the scope of any non-local quantity of
the procedure body the conflicts between the identifiers inserted through this
process of body replacement and the identifiers whose declarations are valid
at the place of the procedure statement or function designator will be avoided
through suitable systematic changes of the latter identifiers.

29

4.7.4 Actual-formal correspondence. The correspondence between the
actual parameters of the procedure statement and the formal parameters of
the procedure heading is established as follows: The actual parameter list of
the procedure statement must have the same number of entries as the formal
parameter list of the procedure declaration heading. The correspondence is
obtained by taking the entries of these two lists in the same order.

4.7.5 Restrictions. For a procedure statement to be defined it is evidently
necessary that the operations on the procedure body defined in sections 4.7.3.1
and 4.7.3.2 lead to a correct Algol statement.

This poses the restriction on any procedure statement that the kind and
type of each actual parameter be compatible with the kind and type of the
corresponding formal parameter. Some important particular cases of this general
rule are the following:

4.7.5.1 If a string is supplied as an actual parameter in a procedure statement
or function designator, whose defining procedure body is an Algol 60 statement
(as opposed to non-Algol code, cf. section 4.7.8), then this string can only be
used within the procedure body as an actual parameter in further procedure calls.
Ultimately it can only be used by a procedure body expressed in non-Algol
code.

4.7.5.2 A formal parameter which occurs as a left part variable in an assignment
statement within the procedure body and which is not called by value can only
correspond to an actual parameter which is a variable (special case of expression).

4.7.5.3 A formal parameter which is used within the procedure body as an
array identifier can only correspond to an actual parameter which is an array
identifier of an array of the same dimensions. In addition if the formal parameter
is called by value the local array created during the call will have the same
subscript bounds as the actual array.

4.7.5.4 A formal parameter which is called by value cannot in general corre-
spond to a switch identifier or a procedure identifier or a string, because these
latter do not possess values (the exception is the procedure identifier of a proce-
dure declaration which has an empty formal parameter part (cf. section 5.4.1)
and which defines the value of a function designator (cf. section 5.4.4). This
procedure identifier is in itself a complete expression).

4.7.5.5 Any formal parameter may have restrictions on the type of the cor-
responding actual parameter associated with it (these restrictions may, or may
not, be given through specifications in the procedure heading). In the procedure
statement such restrictions must evidently be observed.

4.7.6 Deleted.

30

4.7.7 Parameter delimiters. All parameter delimiters are understood to
be equivalent. No correspondence between the parameter delimiters used in
a procedure statement and those used in the procedure heading is expected
beyond their number being the same. Thus the information conveyed by using
the elaborate ones is entirely optional.

4.7.8 Procedure body expressed in code. The restrictions imposed on a
procedure statement calling a procedure having its body expressed in non-Algol
code evidently can only be derived from the characteristics of the code used and
the intent of the user and thus fall outside the scope of the reference language.

5 Declarations

Declarations serve to define certain properties of the quantities used in the
program, and to associate them with identifiers. A declaration of an identifier is
valid for one block. Outside this block the particular identifier may be used for
other purposes (cf. section 4.1.3).

Dynamically this implies the following: at the time of an entry into a block
(through the begin since the labels inside are local and therefore inaccessible
from outside) all identifiers declared for the block assume the significance implied
by the nature of the declarations given. If these identifiers had already been
defined by other declarations outside they are for the time being given a new
significance. Identifiers which are not declared for the block, on the other hand,
retain their old meaning.

At the time of an exit from an block (through end, or by a go to statement)
all identifiers which are declared for the block lose their local significance.

A declaration my be marked with the additional declarator own. This has
the following effect: upon a reentry into the block, the values of own quantities
will be unchanged from their values at the last exit, while the values of declared
variables which are not marked as own are undefined. Apart from labels and
formal parameters of procedure declarations and with the possible exception
of those for standard functions (cf. sections 3.2.4 and 3.2.5) all identifiers of a
program must be declared. No identifier may be declared more than once in any
one block head.

Syntax.

〈declaration〉 ::= 〈type declaration〉 | 〈array declaration〉 |
〈switch declaration〉 | 〈procedure declaration〉

5.1 Type declarations

31

5.1.1 Syntax.

〈type list〉 ::= 〈simple variable〉 | 〈simple variable〉, 〈type list〉
〈type〉 ::= real | integer | Boolean

〈local or own type〉 ::= 〈type〉 | own〈type〉
〈type declaration〉 ::= 〈local or own type〉〈type list〉

5.1.2 Examples. integer p, q, s

own Boolean Acryl, n

5.1.3 Semantics. Type declarations serve to declare certain identifiers to
represent simple variables of a given type. Real declared variables may only
assume positive or negative values including zero. Integer declared variables may
only assume positive and negative integral values including zero. Boolean declared
variables may only assume the values true and false.

In arithmetic expressions any position which can be occupied by a real declared
variable may be occupied by an integer declared variable.

For the semantics of own, see the fourth paragraph of section 5 above.

5.2 Array declarations

5.2.1 Syntax.

〈lower bound〉 ::= 〈arithmetic expression〉
〈upper bound〉 ::= 〈arithmetic expression〉
〈bound pair〉 ::= 〈lower bound〉 : 〈upper bound〉
〈bound pair list〉 ::= 〈bound pair〉 | 〈bound pair list〉, 〈bound pair〉
〈array segment〉 ::= 〈array identifier〉[〈bound pair list〉] |
〈array identifier〉, 〈array segment〉

〈array list〉 ::= 〈array segment〉 | 〈array list〉, 〈array segment〉
〈array declaration〉 ::= array 〈array list〉 |
〈local or own type〉 array 〈array list〉

5.2.2 Examples. array a, b, c[7 : n, 2 : m], s[−2 : 10]

own integer array A[if c < 0 then 2 else 1 : 20]

real array q[−7 : −1]

5.2.3 Semantics. An array declaration declares one or several identifiers
to represent multidimensional arrays of subscripted variables and gives the
dimensions of the arrays, the bound of the subscripts, and the types of the
variables.

32

5.2.3.1 Subscript bounds The subscript bounds for any array are given in the
first subscript bracket following the identifier of this array in the form of a bound
pair list. Each item of this list gives the lower and upper bound of a subscript in
the form of two arithmetic expressions separated by the delimiter :. The bound
pair list gives the bounds of all subscripts taken in order from left to right.

5.2.3.2 Dimensions The dimensions are given as the number of entries in the
bound pair list.

5.2.3.3 Types All arrays declared in one declaration are of the same quoted
type. If no type declarator is given the type real is understood.

5.2.4 Lower upper bound expressions.

5.2.4.1 The expressions will be evaluated in the same way as subscript expres-
sions (cf. section 3.1.4.2).

5.2.4.2 The expressions can only depend on variables and procedures which are
non-local to the block for which the array declaration is valid. Consequently in
the outermost block of a program only array declarations with constant bounds
may be declared.

5.2.4.3 An array is defined only when the values of all upper subscript bounds
are not smaller than those of the corresponding lower bounds.

5.2.4.4 The expressions will by evaluated once at each entrace into the block.

5.2.5 The identity of subscripted variables. The identity of a subscripted
variable is not related to the subscript bounds given in the array declaration.
However, even if an array is declared own the values of the corresponding
subscripted variables will, at any time, be defined only for those of these variables
which have subscripts within the most recently calculated subscript bounds.

5.3 Switch declarations

5.3.1 Syntax.

〈switch list〉 ::= 〈designational expression〉 |
〈switch list〉, 〈designational expression〉

〈switch declaration〉 ::= switch 〈switch identifier〉 := 〈switch list〉

5.3.2 Examples. switch S := S1, S2, Q[m], if v > − 5 then S3 else S4

switch Q := p1, w

33

5.3.3 Semantics. A switch declaration defines the set of values of the corre-
sponding switch designators. These values are given one by one as the values
of the designational expressions entered in the switch list. With each of these
designational expressions there is associated a positive integer, 1, 2, ..., obtained
by counting the items in the list from left to right. The value of the switch
designator corresponding to a given value of the subscript expression (cf. section
3.5. Designational expressions) is the value of the designational expression in the
switch list having this given value as its associated integer.

5.3.4 Evaluation of expressions in the switch list. An expression in the
switch list will be evaluated every time the item of the list in which the expression
occurs is referred to, using the current values of all variables involved.

5.3.5 Influence of scopes. If a switch designator occurs outside the scope
of a quantity entering into a designational expression in the switch list, and an
evaluation of this switch designator selects this designational expression, then
the conflicts between the identifiers for the quantities in this expression and the
identifiers whose declarations are valid at the place of the switch designator will
be avoided through suitable systematic changes of the latter identifiers.

5.4 Procedure declarations

5.4.1 Syntax.

〈formal parameter〉 ::= 〈identifier〉
〈formal parameter list〉 ::= 〈formal parameter〉 | 〈formal parameter list〉
〈parameter delimiter〉〈formal parameter〉

〈formal parameter part〉 ::= 〈empty〉 | (〈formal parameter list〉)
〈identifier list〉 ::= 〈identifier〉 | 〈identifier list〉, 〈identifier〉
〈value part〉 ::= value 〈identifier list〉; | 〈empty〉

〈specifier〉 ::= string | 〈type〉 | array | 〈type〉 array | label | switch |
procedure | 〈type〉 procedure

〈specification part〉 ::= 〈empty〉 | 〈specifier〉〈identifier list〉; |
〈specification part〉〈specifier〉〈identifier list〉

〈procedure heading〉 ::= 〈procedure identifier〉〈formal parameter part〉;
〈value part〉〈specification part〉

〈procedure body〉 ::= 〈statement〉 | 〈code〉
〈procedure declaration〉 ::= procedure 〈procedure heading〉〈procedure body〉 |
〈type〉 procedure 〈procedure heading〉〈procedure body〉

34

5.4.2 Examples (see also the examples at the end of the report).

procedure Spur (a) Order : (n); value n;

array a; integer n; real s;

begin integer k;

s := 0;

for k := 1 step 1 until n do s := s + a[k, k]

end

procedure Transpose (a) Order : (n); value n;

array a; integer n;

begin real w; integer i, k;

for i := 1 step 1 until ndo

for k := 1 + i step 1 until ndo

begin w := a[i, k];

a[i, k] := a[k, i];

a[k, i] := w

end

end Transpose

integer procedure Step(u); real u;

Step := if 0 ≤ u ∧ u ≤ 1 then 1 else 0

procedure Absmax (a) Size : (n,m) Result : (y) Subscripts : (i, k);

comment The absolute greatest element of the matrix a, of size n by m
is transferred to y, and the subscripts of this element to i and k;

array a; integer n,m, i, k; real y;

begin integer p, q;

y := 0;

for p := 1 step 1 until n do for q := 1 step 1 until m do

if abs(a[p, q]]) > y then begin y := abs(a[p, q]);

i := p; k := q end end Absmax

procedure Innerproduct(a, b) Order : (k, p) Result : (y); value k;

integer k, p; real y, a, b;

s := 0;

for p := 1 step 1 until k do s := s + a× b;

y := s

end Innerproduct

35

5.4.3 Semantics. A procedure declaration serves to define the procedure
associated with a procedure identifier. The principal constituent of a procedure
declaration is a statement or a piece of code, the procedure body, which through
the use of procedure statements and/or function designators may be activated
from other parts of the block in the head of which the procedure declaration
appears. Associated with the body is a heading, which specifies certain identifiers
occurring within the body to represent formal parameters. Formal parameters
in the procedure body will, whenever the procedure is activated (cf. section 3.2.
Function designators and section 4.7. Procedure statements) be assigned the
values of or replaced by actual parameters. Identifiers in the procedure body
which are not formal will be either local or non-local to the body depending
on whether they are declared within the body or not. Those of them which are
non-local to the body may well be local to the block in the head of which the
procedure declaration appears. The procedure body always acts like a block,
whether it has the form of one or not. Consequently the scope of any label
labelling a statement within the body or the body itself can never extended
beyond the procedure body. In addition, if the identifier of a formal parameter is
declared anew within the procedure body (including the case of its use as a label
in section 4.1.3), it is thereby given a local significance and actual parameters
which correspond to it are inaccessible throughout the scope of its inner local
quantity.

5.4.4 Values of function designators. For a procedure declaration to define
the value of a function designator there must, within the procedure declaration
body, occur one or more explicit assignment statements with the procedure
identifier in a left part; at least one of these must be executed, and the type
associated with the procedure identifier must be declared through the appearance
of a type declarator as the very first symbol of the procedure declaration. The
last value so assigned is used to continue the evaluation of the expression in which
the function designator occurs. Any occurrence of the procedure identifier within
the body of the procedure other than in a left part in an assignment statement
denotes activation of the procedure.

5.4.5 Specifications. In the heading a specification part, giving information
about the kinds and types of the formal parameters by means of an obvious
notation, may be included. In this part no formal parameter may occur more
than once. Specification of formal parameters called by value (cf. section 4.7.3.1)
must be supplied and specifications of formal parameters called by name (cf.
section 4.7.3.2) may be omitted.

5.4.6 Code as procedure body. It is understood that the procedure body
may be expressed in non-Algol language. Since it is intended that the use of
this feature should be entirely a question of hardware representation, no further
rules concerning this code language can be given within the reference language.

36

Examples of procedure declarations

Example 1

procedure euler (fct, sum, eps, tim); value eps, tim; integer tim;

real procedure fct; real sum, eps;

comment euler computes the sum of fct(i) for i from zero up to infinity
by means of a suitably refined euler transformation. The summation is
stopped as soon as tim times in succession the absolute value of the terms
of the transformed series are found to be less than eps. Hence, one should
provide a function fct with one integer argument, an upper bound eps,
and an integer tim. The output is the sum sum. euler is particularly
efficient in the case of a slowly convergent or divergent alternating series;

begin integer i, k, n, t; array m[0 : 15]; real mn,mp, ds;

i := n := t := 0;m[0] := fct(0); sum := m[0]/2;

nextterm : i := i + 1;mn := fct(i);

for k := 0 step 1 until n do

begin mp := (mn + m[k])/2;m[k] := mn;mn := mp end means;

if (abs(mn) < abs(m[n])) ∧ (n < 15) then

begin ds := mn/2;n := n + 1;m[n] := mn end accept

else ds := mn;

sum := sum + ds;

if abs(ds) < eps then t := t + 1 else t := 0;

if t < tim then go to nextterm

end euler

37

Example 28

procedure RK(x, y, n, FKT, eps, eta, xE, yE, fi); value x, y; integer n;

Boolean fi; real x, eps, eta, xE; array y, yE; procedure FKT ;

comment RK integrates the system y′k = fk(x, y1, y2, ..., yn)(k =
1, 2, ...n) of differential equations with the method of Runge-Kutta with
automatic search for appropriate length of integration step. Parameters
are: The initial values x and y[k] for x and the unknown functions yk(x).
The order n of the system. The procedure FKT (x, y, n, z) which rep-
resents the system to be integrated, i.e. the set of functions fk. The
tolerance values eps and eta which govern the accuracy of the numerical
integration. The end of the integration interval xE; The output param-
eter yE which represents the solution x = xE. The Boolean variable
fi, which must always be given the value true for an isolated or first
entry into RK. If however the functions y must be available at several
meshpoints x0, x1, ..., xn, then the procedure must be called repeatedly
(with x = xk, xE = x(k + 1), for k = 0, 1, ..., n − 1) and then the later
calls may occur with fi=false which saves computing time. The input
parameters of FKT must be x,y,z,n, the output parameter z represents
the set of derivatives z[k] = fk(x, y[1], y[2], ..., y[n]) for x and the actual
y’s. A procedure comp enters as a non-local identifier;

begin

array z, y1, y2, y3[1 : n]; real x1, x2, x3, H; Boolean out;

integer k, j; own real s,Hs;

procedure RK1ST (x, y, h, xe, ye); real x, h, xe; array y, ye;

commentRK1ST integrates one single Runge-Kutta step with initial
values x, y[k] which yields the output parameters xe = x + h and ye[k],
the latter being the solution at xe. Important: the parameters n, FKT, z
enter RK1ST as nonlocal entities;

begin

array w[1 : n], a[1 : 5]; integer k, j;

a[1] := a[2] := a[5] := h/2; a[3] := a[4] := h;xe := x;

for k := 1 step 1 until n do ye[k] := w[k] := y[k];

for j := 1 step 1 until 4 do

begin

FKT (xe,w, n, z);

xe := x + a[j];

for k := 1 step 1 until n do

begin

w[k] := y[k] + a[j]× z[k];

ye[k] := ye[k] + a[j + 1]× z[k]/3

end k

end j

end RK1ST ;

8 This RK-program contains some new ideas which are related to ideas of S. Gill, A
process for the step by step integration of differential equations in an automatic
computing machine. Proc. Camb. Phil. Soc. 47 (1951) p. 96, and E. Fröberg, On the
solution of ordinary differential equations with digital computing machines, Fysiograf.
Sällsk. Lund, Förhd. 20 Nr. 11 (1950) p. 136-152. It must be clear however that with
respect to computing time and round-off errors it may not be optimal, nor has it
actually been tested on a computer.

38

Begin of program :

if fi then begin H := xE − x; s := 0 end else H := Hs;

out := false;

AA : if (x + 2.01×H − xE) > 0) ≡ (H > 0) then

begin Hs := H; out := true;H := (xE − x)/2 end if ;

RK1ST (x, y, 2×H,x1, y1);

BB : RK1ST (x, y,H, x2, y2);RK1ST (x2, y2, H, x3, y3);

for k := 1 step 1 until n do

if comp(y1[k], y3[k], eta) > eps then go to CC;

comment comp(a, b, c) is a function designator, the value of which is
the absolute value of the difference of the mantissae of a and b, after the
exponents of these quantities have been made equal to the largest of the
exponents of the originally given parameters a, b, c;

x := x3; if out then go to DD;

for k := 1 step 1 until n do y[k] := y3[k];

if s = 5 then begin s := 0;H := 2×H end if ;

s := s + 1; go to AA;

CC : H := 0.5×X; out := false;x1 := x2;

for k := 1 step 1 until n do y1[k] := y2[k];

go to BB;

DD : for k := 1 step 1 until n do yE[k] := y3[k]

end RK

Alphabetic index of definitions of concepts and syntactic
units

All references are given through section numbers. The references are given in
three groups:

def Following the abbreviation “def”, reference to the syntactic definition (if any)
is given.

synt Following the abbreviation “synt”, references to the occurrences in metalin-
guistic formulae are given. References already quoted in the def-group are
not repeated.

text Following the word “text”, the references to definitions given in the text
are given.

The basic symbols represented by signs other than underlined (bold faced.
Publishers remark) words have been collected at the beginning. The examples
have been ignored in compiling the index.

+ see: plus

39

− see: minus
× see: multiply
/ ÷ see: divide
↑ see: exponentiation
< ≤ = ≥ > 6= see: 〈relational operator〉
≡ ⊃ ∨ ∧ ¬ see: 〈logical operator〉
, see: comma
. see: decimal point

10 see: ten
: see: colon
; see: semicolon
:= see: colon equal

see: space
() see: parentheses
[] see: subscript bracket
‘ ’ see: string quote
〈actual parameter〉, def 3.2.1, 4.7.1
〈actual parameter list〉, def 3.2.1, 4.7.1
〈actual parameter part〉, def 3.2.1, 4.7.1
〈adding operator〉, def 3.3.1
alphabet, text 2.1
arithmetic, text 3.3.6
〈arithmetic expression〉, def 3.3.1 synt 3, 3.1.1, 3.4.1, 4.2.1, 4.6.1, 5.2.1 text 3.3.3
〈arithmetic operator〉, def 2.3 text 3.3.4
array, synt 2.3, 5.2.1, 5.4.1
array, text 3.1.4.1
〈array declaration〉, def 5.2.1 synt 5 text 5.2.3
〈array identifier〉, def 3.1.1 synt 3.2.1, 4.7.1, 5.2.1 text 2.8
〈array list〉, def 5.2.1
〈array segment〉, def 5.2.1
〈assignment statement〉, def 4.2.1 synt 4.1.1 text 1, 4.2.3
〈basic statement〉, def 4.1.1 synt 4.5.1
〈basic symbol〉, def 2
begin, synt 2.3, 4.1.1
〈block〉, def 4.1.1 synt 4.5.1 text 1, 4.1.3, 5
〈block head〉, def 4.1.1
Boolean, synt 2.3, 5.1.1 text 5.1.3
〈Boolean expression〉, def 3.4.1 synt 3, 3.3.1, 4.2.1, 4.5.1, 4.6.1 text 3.4.3
〈Boolean factor〉, def 3.4.1
〈Boolean primary〉, def 3.4.1
〈Boolean secondary〉, def 3.4.1
〈Boolean term〉, def 3.4.1
〈bound pair〉, def 5.2.1
〈bound pair list〉, def 5.2.1
〈bracket〉, def 2.3

40

〈code〉, synt 5.4.1 text 4.7.8, 5.4.6
colon : , synt 2.3, 3.2.1, 4.1.1, 4.5.1, 4.6.1, 4.7.1, 5.2.1
colon equal := , synt 2.3, 4.2.1, 4.6.1, 5.3.1
comma , , synt 2.3, 3.1.1, 3.2.1, 4.6.1, 4.7.1, 5.1.1, 5.2.1, 5.3.1, 5.4.1
comment, synt 2.3
comment convention, text 2.3
〈compound statement〉, def 4.1.1 synt 4.5.1 text 1
〈compound tail〉, def 4.1.1
〈conditional statement〉, def 4.5.1 synt 4.1.1 text 4.5.3
〈decimal fraction〉, def 2.5.1
〈decimal number〉, def 2.5.1 text 2.5.3
decimal point . , synt 2.3, 2.5.3
〈declaration〉, def 5 synt 4.1.1 text 1, 5 (complete section)
〈declarator〉, def 2.3
〈delimiter〉, def 2.3 synt 2
〈designational expression〉, def 3.5.1 synt 3, 4.3.1, 5.3.1 text 3.5.3
〈digit〉, def 2.2.1 synt 2, 2.4.1, 2.5.1
dimension, text 5.2.3.2
divide / ÷, synt 2.3, 3.3.1 text 3.3.4.2
〈dummy statement〉, def 4.4.1 synt 4.1.1 text 4.4.3
else, synt 2.3, 3.3.1, 3.4.1, 3.5.1, 4.5.1 text 4.4.3
〈empty〉, def 1.1 synt 2.6.1, 3.2.1, 4.4.1, 4.7.1, 5.4.1
end, synt 2.3, 4.1.1
entier, text 3.2.5
exponentiation ↑, synt 2.3, 3.3.1 text 3.3.4.3
〈expression〉, def 3 synt 3.2.1, 4.7.1 text 3 (complete section)
〈exponential part〉, def 2.5.1 text 2.5.3
〈factor〉, def 3.3.1
false, synt 2.2.2
〈for clause〉, def 4.6.1 text 4.6.3
〈for list〉, def 4.6.1 text 4.6.4
〈for list element〉, def 4.6.1 text 4.6.4.1, 4.6.4.2, 4.6.4.3
〈formal parameter〉, def 5.4.1 text 5.4.3
〈formal parameter list〉, def 5.4.1
〈formal parameter part〉, def 5.4.1
〈for statement〉, def 4.6.1 synt 4.1.1, 4.5.1 text 4.6 (complete section)
〈function designator〉, def 3.2.1 synt 3.3.1, 3.4.1 text 3.2.3, 5.4.4
go to, synt 2.3, 4.3.1
〈go to statement〉, def 3.4.1 synt 4.1.1 text 4.3.3
〈identifier〉, def 2.4.1 synt 3.1.1, 3.2.1, 3.5.1, 5.4.1 text 2.4.3
〈identifier list〉, def 5.4.1
if, synt 2.3, 3.3.1, 4.5.1
〈if clause〉, def 3.3.1, 4.5.1 synt 3.4.1, 3.5.1 text 3.3.3, 4.5.3.2
〈if statement〉, def 4.5.1 text 4.5.3.1
〈implication〉, def 3.4.1

41

integer, synt 2.3, 5.1.1 text 5.1.3
〈integer〉, def 2.5.1 text 2.5.4
label, synt 2.3, 5.4.1
〈label〉, def 3.5.1 synt 4.1.1, 4.5.1, 4.6.1 text 1, 4.1.3
〈left part〉, def 4.2.1
〈left part list〉, def 4.2.1
〈letter〉, def 2.1 synt 2, 2.4.1, 3.2.1, 4.7.1
〈letter string〉, def 3.2.1, 4.7.1
local, text 4.1.3
〈local or own type〉, def 5.1.1 synt 5.2.1
〈logical operator〉, def 2.3 synt 3.4.1 text 3.4.5
〈logical value〉, def 2.2.2 synt 2, 3.4.1
〈lower bound〉, def 5.2.1 text 5.2.4
minus −, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
multiply ×, synt 2.3, 3.3.1 text 3.3.4.1
〈multiplying operator〉, def 3.3.1
non-local, text 4.1.3
〈number〉, def 2.5.1 text 2.5.3, 2.5.4
〈open string〉, def 2.6.1
〈operator〉, def 2.3
own, synt 2.3, 5.1.1 text 5, 5.2.5
〈parameter delimiter〉, def 3.2.1, 4.7.1 synt 5.4.1 text 4.7.7
parentheses (), synt 2.3, 3.2.1, 3.3.1, 3.4.1, 3.5.1, 4.7.1, 5.4.1 text 3.3.5.2
plus +, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
〈primary〉, def 3.3.1
procedure, synt 2.3, 5.4.1
〈procedure body〉, def 5.4.1
〈procedure declaration〉, def 5.4.1 synt 5 text 5.3
〈procedure heading〉, def 5.4.1 text 5.4.3
〈procedure identifier〉, def 3.2.1 synt 3.2.1, 4.7.1, 5.4.1 text 4.7.5.4
〈procedure statement〉, def 4.7.1 synt 4.1.1 text 4.7.3
〈program〉, def 4.1.1 text 1
〈proper string〉, def 2.6.1
real, synt 2.3, 5.1.1 text 5.1.3
〈relation〉, def 3.4.1 text 3.4.5
〈relational operator〉, def 2.3, 3.4.1
scope, text 2.7
semicolon ; , synt 2.3, 4.1.1, 5.4.1
〈separator〉, def 2.3
〈sequential operator〉, def 2.3
〈simple arithmetic expression〉, def 3.3.1 text 3.3.3
〈simple Boolean〉, def 3.4.1
〈simple designational expression〉, def 3.5.1
〈simple variable〉, def 3.1.1 synt 5.1.1 text 2.4.3
space , synt 2.3 text 2.3, 2.6.3

42

〈specification part〉, def 5.4.1 text 5.4.5
〈specificator〉, def 2.3
〈specifier〉, def 5.4.1
standard function, text 3.2.4, 3.2.5
〈statement〉, def 4.1.1 synt 4.5.1, 4.6.1, 5.4.1 text 4 (complete section)
statement bracket see: begin end
step, synt 2.3, 4.6.1 text 4.6.4.2
string, synt 2.3, 5.4.1
〈string〉, def 2.6.1 synt 3.2.1, 4.7.1 text 2.6.3
string quotes ‘ ’, synt 2.3, 2.6.1 text 2.6.3
subscript, text 3.1.4.1
subscript bound, text 5.2.3.1
subscript brackets [], synt 2.3, 3.1.1, 3.5.1, 5.2.1
〈subscripted variable〉, def 3.1.1 text 3.1.4.1
〈subscript expression〉, def 3.1.1 synt 3.5.1
〈subscript list〉, def 3.1.1
successor, text 4
switch, synt 2.3, 5.3.1, 5.4.1
〈switch declaration〉, def 5.3.1 synt 5 text 5.3.3
〈switch designator〉, def 3.5.1 text 3.5.3
〈switch identifier〉, def 3.5.1 synt 3.2.1, 4.7.1, 5.3.1
〈switch list〉, def 5.3.1
〈term〉, def 3.3.1
ten 10, synt 2.3, 2.5.1
then, synt 2.3, 3.3.1, 4.5.1
transfer function, text 3.2.5
true, synt 2.2.2
〈type〉, def 5.1.1 synt 5.4.1 text 2.8
〈type declaration〉, def 5.1.1 synt 5 text 5.1.3
〈type list〉, def 5.1.1
〈unconditional statement〉, def 4.1.1, 4.5.1
〈unlabelled basic statement〉, def 4.1.1
〈unlabelled block〉, def 4.1.1
〈unlabelled compound〉, def 4.1.1
〈unsigned integer〉, def 2.5.1, 3.5.1
〈unsigned number〉, def 2.5.1 synt 3.3.1
until, synt 2.3, 4.6.1 text 4.6.4.2
〈upper bound〉, def 5.2.1 text 5.2.4
value, synt 2.3, 5.4.1
value, text 2.8, 3.3.3
〈value part〉, def 5.4.1 text 4.7.3.1
〈variable〉, def 3.1.1 synt 3.3.1, 3.4.1, 4.2.1, 4.6.1 text 3.1.3
〈variable identifier〉, def 3.1.1
while, synt 2.3, 4.6.1 text 4.6.4.3

43

Note. This report is published in Numerische Mathematik, in the Communica-
tions of the ACM, and in the Journal of the British Computer Soc. Reproduction
of this report for any purpose is explicitly permitted; reference should be made
to this issue of Numerische Mathematik and to the respective issues of the
Communications and the Journal of the British Computer Soc. as the source.

Technical University Delft
Delft, Holland

W. L. van der Poel,
(Chairman of Working Group 2.1 on Algol of the
International Federation for Information Processing)

	Introduction
	Structure of the language
	Formalism for syntactic description

	Basic symbols, identifiers, numbers, and strings. Basic concepts
	Letters
	Digits.
	Logical values.

	Delimiters
	Identifiers
	Syntax.
	Examples.
	Semantics.

	Numbers
	Syntax.
	Examples.
	Semantics.
	Types.

	Strings
	Syntax.
	Examples.
	Semantics.

	Quantities, kinds and scopes
	Values and types

	Expressions
	Variables
	Syntax.
	Examples.
	Semantics.
	Subscripts.

	Function designators
	Syntax.
	Examples.
	Semantics.
	Standard functions.
	Transfer functions.

	Arithmetic expressions
	Syntax.
	Examples.
	Semantics.
	Operators and types.
	Precedence of operators.
	Arithmetics of real quantities.

	Boolean expressions
	Syntax.
	Examples.
	Semantics.
	Types.
	The operators.
	Precedence of operators.

	Designational expressions
	Syntax.
	Examples.
	Semantics.
	The subscript expression.
	Unsigned integers as labels.

	Statements
	Compound statements and blocks
	Syntax.
	Examples.
	Semantics.

	Assignment statements
	Syntax.
	Examples.
	Semantics.
	Types.

	Go to statements
	Syntax.
	Examples.
	Semantics.
	Restriction.
	Go to an undefined switch designator.

	Dummy statements
	Syntax.
	Examples.
	Semantics.

	Conditional statements
	Syntax.
	Examples.
	Semantics.
	Go to into a conditional statement.

	For statements
	Syntax.
	Examples.
	Semantics.
	The for list elements.
	The value of the controlled variable upon exit.
	Go to leading into a for statement.

	Procedure statements
	Syntax.
	Examples.
	Semantics.
	Actual-formal correspondence.
	Restrictions.
	Deleted.
	Parameter delimiters.
	Procedure body expressed in code.

	Declarations
	Type declarations
	Syntax.
	Examples.
	Semantics.

	Array declarations
	Syntax.
	Examples.
	Semantics.
	Lower upper bound expressions.
	The identity of subscripted variables.

	Switch declarations
	Syntax.
	Examples.
	Semantics.
	Evaluation of expressions in the switch list.
	Influence of scopes.

	Procedure declarations
	Syntax.
	Examples (see also the examples at the end of the report).
	Semantics.
	Values of function designators.
	Specifications.
	Code as procedure body.

	Examples of procedure declarations
	Alphabetic index of definitions of concepts and syntactic units

