OBJECT-ORIENTED
PROGRAMMING: SMALLTALK

=r

12.1 HISTORY AND MOTIVATION

The second paradigm represented in fifth-generation languages is object-oriented program-
ming, for which Smalltalk is the best example.

Alan Kay Saw the Potential for Personal Computers

The principal person responsible for the Smalltalk language is Alan Kay.! When he was a
graduate student at the University of Utah in the late 1960s, he became convinced that even-
tually it would be possible to put the power of what was then a room-sized, million-dollar
computer into a package the size of a three-ring notebook. It seemed clear that given the di-
rection in which technology was moving, it would eventually be possible for everyone to
own a personal computer of considerable power. Kay remarks, “I was almost frightened by
the implication; computing as we knew it couldn’t survive.”

At that time it was not obvious that anyone would want a personal computer. They prob-
ably would not want to use a personal computer for the scientific and commercial applica-
tions that occupy large computers. And what language would people use to program their
personal computers? Existing programming languages were designed by and for specialists
and were oriented to just the sort of applications for which personal computers were unlikely
to be used. It seemed to Kay that the absence of an adequate programming vehicle might be
the main impediment to the success of the personal computer. With a better choice of lan-
guage and interface, the reaction to the new technology might be shifted from fear to fasci-
nation (Section 1.4).

!In “The Early History of Smalltalk” (SIGPLAN Notices 28, 3, March 1993, pp. 69-95) Kay discusses the
many sources of his ideas and the principal contributers to Smalltalk. This article is the source of quotations
from Kay in this chapter.

403

404 OBJECT-ORIENTED PROGRAMMING: SMALLTALK

Kay Investigated Simulation and Graphics-Oriented Languages

While still at the University of Utah, Kay decided that a simulation and graphics-oriented
programming language could make computers accessible to nonspecialists. He already had
some experience with a language he had helped design called FLEX. This language took
many of its most important ideas (such as classes and objects, both discussed later) from |
Simula, a simulation language based on Algol-60 and designed in the 1960s.
FLEX was still too oriented toward specialists, however, so Kay also incorporated ideas ’
from LOGO, a language designed by Seymour Papert and others at MIT. Since the early
1960s, Papert had been using LOGO to teach programming concepts to children 8-12 years
- old. The LOGO environment taught Kay that nonspecialists require a rich interactive envi-
ronment making use of graphics and audio communication. Kay was also influenced by the
sophisticated Sketchpad and GRAIL graphic communication systems and by Douglas En-
glebart’s prophetic view of interactive computing as an “augmentation of human intellect.”
The design of Smalltalk was also influenced by the research of a number of cognitive
scientists and psychologists, including John Dewey, Maria Montessori, Jean Piaget, Jerome
Bruner, and Seymour Papert, as well as by ideas from Plato, Leibnitz, and Marshall McLuhan.

Xerox Supported Dynabook Research

Kay proposed to Xerox Corporation his idea of a personal computer; it was called the Dyna-
book. He anticipated that in the 1980s it would be possible to put into a package the size of
a notebook a computer capable of executing millions of instructions per second and of hold-
ing the equivalent of thousands of pages of information. To make this information accessi-
ble, the Dynabook would have a flat-screen, liquid crystal reflective display that would be
sensitive to the touch of a finger. This would allow the user to point at things and would al-
low a portion of the screen to double as a keyboard. It was also intended that the Dynabook
could be connected to a stereo, so that it could be used to generate music, and that it could
be connected to communication lines, to provide access to large, shared data banks. Kay be-
lieved that the availability of the Dynabook would be as revolutionary as the availability of
inexpensive, “personal” books after the Industrial Revolution. As Don Thde has said, “Tech-
nologies reveal worlds.”

Smalltalk Is the Language for the Dynabook

In 1971 the Xerox Palo Alto Research Center began a research project to develop the Dyna-
book. Smalltalk-72, the language for the Dynabook, was designed and implemented by 1972,
and in 1973 a desk-sized “Interim Dynabook™ became available for research. Smalltalk-72
and the Interim Dynabook were used in personal computing experiments involving over 250
children (6-15 years old) and 50 adults. One of their principles was “Simple things should
be simple, complex things should be possible.” Experience with Smalltalk has led to several
revisions of the language, including Smalltalk-74, Smalltalk-76, Smalltalk-78, and Smalltalk-
80, which is the dialect described in this chapter;? a draft standard has been completed.

2 The principal source we have used is Goldberg and Robson (1983).

12.2 DESIGN: STRUCTURAL ORGANIZATION 405

Status .
information - /,——Dlrectory
- eas
Dialogue/' ~—~——]___ Editing
window menu
. |
/
hid Mail — Program being
edited
/ I >~
Documentation —7 [———Trace

Figure 12.1 Example of a Dynabook Display

Many of the ideas developed for the Dynabook (including window-oriented display man-
agement, Figure 12.1) were later used in Apple’s Lisa computer system (1983), which was
one of the inspirations for the Apple Macintosh computer (introduced in 1984). It is no ac-
cident that the Dynabook window-oriented interface has become the dominant way of inter-
acting with computers.

12.2 DESIGN: STRUCTURAL ORGANIZATION

Smalltalk Is Interactive and Interpreted

To satisfy the requirements of the Dynabook, Smalltalk has to be a highly interactive lan-
guage. Although much of the user’s communication with Smalltalk is accomplished by point-
ing, it is possible to type commands to be executed in a “dialogue” window. This style of
programming is similar to that used with LISP: The user types commands to the system that
either define things or call for the execution of expressions involving things already defined.

There are two primary ways to define things in Smalltalk. The first binds a name to an
object. For example,

X<« 3.
yex + 1

binds ‘x’ to the object 3 and ‘y’ to the object 4. This is analogous to an application of set
in LISP and to an assignment statement in other languages. The other way to define things
is by a class definition. Classes are similar to Ada packages; they are discussed later.

406 OBJECT-ORIENTED PROGRAMMING: SMALLTALK

The user requests the evaluation of an expression by typing an expression such as x*2.
The dialogue looks like this:

X*2
6

Smalltalk interprets this action as sending the message ‘*2’ to the object x. This rather un-
usual view of expressions is explained next.

Objects React to Messages

Since Smalltalk provides a unique programming environment, we will begin by showing a
typical Smalltalk session. We have said that Smalltalk is graphics oriented and that it bor-
rowed its interactive style from LOGO. LOGO introduced a style of graphics called “turtle
graphics” that is based on objects (called “turtles”) that draw as they move around the screen.
Smalltalk provides a similar class of objects called pens.

In our first example, we will investigate the behavior of a pen named Scribe and see
how it can draw on the screen. The display shows us the position of Scribe.

Let’s assume that Scribe is at position (500,500), the center of the screen; this is written
500@500 in Smalltalk. To draw a line from coordinates (500,500) to (200,400), we enter

Scribe goto: 200@400

This is a message to Scribe that tells it to draw a line from where it is to (200,400). The
result is

>/

What if we want to move Scribe without drawing a line? We first send the message

Scribe penup

12.2 DESIGN: STRUCTURAL ORGANIZATION 407

which tells Scribe to stop drawing. We then move Scribe to the desired point. For ex-
ample, to draw a vertical line from (500,100) to (500,400), we can enter

Scribe penup.
Scribe goto: 500@100.
Scribe pendn.
Scribe goto: 500@400

The result is

/>‘
Scribe also has an orientation, so that if we tell it to go, it will go a specified distance in
that direction. Suppose the direction of Scribe is to the right, then

Scribe go: 300

has this effect

T

We can complete the square by turning and drawing the remaining lines as follows:

Scribe turn: 90.
Scribe go: 300.
Scribe turn: 90.
Scribe go: 300

408 OBJECT-ORIENTED PROGRAMMING: SMALLTALK

A more convenient way of drawing the square is to use a control structure. To draw a square
whose upper-left-hand corner is at (400,800) with a side of length 100, we can write

Scribe penup; goto: 400@800; pendn; turn 180.
4 timesRepeat: [Scribe go: 100. Scribe turn: 90]

Notice that in the first line we used an abbreviation, a cascaded message, to avoid writing
Scribe over and over again. Also notice the extent to which Smalltalk obeys the Regular-
ity Principle: Even control structures are accomplished by sending messages to objects. In
this case, the object 4 has been sent the message

= timesRepeat: [Scribe go: 100. Scribe turn: 90]

The object 4 responds to this message by repeating the bracketed expressions four times.
The result of these commands is

gn
/

Let’s summarize several important ideas in Smalltalk programming:

1. Objects have a behavior.
2. Objects can be made to do things by sending them messages.
3. Repetitive operations can be simplified by using control structures.

Objects Can Be Instantiated

Having learned to use existing objects, the next step for the Smalltalk programmer is to learn
to create new objects. Continuing our previous example, suppose that we want another pen
and that we want to call it anotherScribe. We cannot just ask for a new object; we have
to say what kind of object we want. Note that a class is just a name for a particular kind of
object; for example, the class Integer includes the objects 0, 1, 2, 3, Furthermore,
every object is an instance of some class, so when we create an object, we have to indicate
the class of which we want it to be an instance. Thus, the process of creating an object is
called instantiation.

Recall that every request for action in Smalltalk must be accomplished by sending a
message to some object. This includes instantiantion. The question is: Which object should
be sent the message requesting the instantiation of a new pen? This message could be di-
rected to some universal system object responsible for all instantiations, but we will be more
in accord with the Information Hiding Principle if we make the class pen itself responsible

12.2 DESIGN: STRUCTURAL ORGANIZATION 409

for instantiating pens. This is the approach used in Smalltalk. To create a new pen and call
it anotherScribe, we enter

anotherScribe « pen newAt: 200@800

This sends the message newAt: 200@800 to the class pen, which creates and returns a
new pen located at coordinates (200,800) and pointing to the right. The name another-
Scribe is bound to this new object; hence, we can direct messages to the new object by
using this name:

anotherScribe pendn.
5 timesRepeat: [anotherScribe go: 50; turn: 72]

=t

The result will be

gSigm
-

® Exercise 12-1: What Smalltalk commands will create a new pen called Writer and
cause it to draw an equilateral triangle with its apex at (800,800).

Classes Can Be Defined

In our previous example, we sent messages to a pen that caused it to draw a box on the
screen. If we wanted to draw another box, we would have to move the pen (or instantiate a
new one) and send it the same messages over again. This would violate the Abstraction Prin-
ciple. A better solution is to define a class box that can be instantiated any number of times.
Smalltalk allows us to do this, thus supporting both the Abstraction and Regularity Princi-
ples (the latter because user-defined classes are just like built-in classes). To see an exam-
ple, look at Figure 12.2, which shows a definition of the box class as it would appear on
the Dynabook screen.

Notice that a class definition has a two-dimensional arrangement in a window; this is
quite different from the one-dimensional syntax associated with the other languages we have
studied. Smalltalk obeys the Regularity Principle by adopting the window as a uniform way
of interacting with users and organizing the screen.

Look at the definition of box in Figure 12.2. The first line is self-explanatory: It names
the class. The second line lists four instance variables. These variables are local to each in-
stance of the class (i.e., to each box) and are instantiated for each box. In other words, each

L——

410 OBJECT-ORIENTED PROGRAMMING: SMALLTALK

class name box

instance variable names loc tilt size scribe

instance messages and methods

shape | |
scribe penup; goto: loc; turnTo: tilt; pendn.
4 timesRepeat: [scribe go: size; turn: 90]

show | |
scribe color ink.
self shape

erase | |
scribe color background.
self shape

grow: amount | |
self erase.
size <« size+amount.
self show

Figure 12.2 Definition of Box Class

box has its own loc, tilt, size, and scribe. The purpose of these variables is as fol-
lows: loc contains the location of the upper-left-hand corner of the box; tilt contains
the angle describing the orientation of the box; size is the length of the box’s side; and
scribe is the pen used by the box to draw its shape.

The rest of the window is devoted to the instance methods; these are the methods that
describe the behavior of the instances when they receive various messages (we will see be-
low that there are also class messages that describe the behavior of classes when they re-
ceive messages). Suppose Bl is a box; then sending it the message shape:

Bl shape

causes it to (1) lift its pen, (2) go to the specified location, (3) turn to the specified angle,
and (4) draw a box of the specified size.

We can see that by changing the color of the pen’s ink, the shape method can be
used either to make the box appear or to make it disappear. This is the purpose of the show
and erase messages. Notice that a box responds to each of these messages by changing
the pen color and sending itself the shape message. (The instance variable self is im-
plicitly bound to the instance to which it is local.)

Let’s look at the ‘grow’ method; B1 responds to Bl grow: 20 by increasing its size
by 20 units. It accomplishes this by erasing itself, increasing its size variable, and redrawing
itself. Notice the formal parameter amount to the ‘grow’ method. Moving a box would be
accomplished in a similar manner.

® Exercise 12-2: Define the ‘move’ method so that Bl move: 100@200 moves box
B1 to location (100,200).

@ Exercise 12-3: Define the ‘turn’ method so that Bl turn: 45 causes box Bl to
turn 45 degrees.

12.3 DESIGN: CLASSES AND SUBCLASSES 411

class name box

instance variable names loc tilt size scribe

class messages and methods

newAt: initialLocation | newBox |
newBox = self new.
newBox setLoc: initialLocation tilt: 0 size: 100 scribe: pen new.
newBox show.
newBox

instance messages and methods

setLoc: newlLoc tilt: newTilt size: newSize scribe: newScribe | |
loc < newloc. tilt < newTilt.
size < newSize. scribe <-newScribe

shape | |
scribe penup; goto: loc; turnTo: tilt; pendn.

Figure 12.3 Class Method in Box Class

Classes Can Also Respond to Messages

We have left a very important part of the definition of boxes undone: the method for in-
stantiation. As we said before, the class itself is responsible for creating new instances of it-
self, so this kind of method is called a class method. In Figure 12.3 we have scrolled up the
window containing the box class to show its instantiation method. Thus, when we execute

B2 «box newAt: 300@200

the message newAt: 300@200 will be sent to the class box. This class method begins
by sending itself (i.e., the class box) the message new. All classes automatically respond to
new by creating a new, uninitialized instance of themselves. This new instance is stored in
the local temporary variable newBox. The instance variables are initialized with a new in-
stance method that has the template setLoc: tilt: size: scribe. The newAt:
method then orders the instance to show itself and finally returns the instance so that it can
be bound to B2.

B Exercise 12-4: Alter the instantiation method for boxes so that they are created with
a tilt of 45° and a size of 200.

B Exercise 12-5: Write an additional instantiation method for boxes, called newSize:,
that creates a box of the given size, but always at the center of the screen [i.e., (500,500)].

12.3 DESIGN: CLASSES AND SUBCLASSES

Smalltalk Objects Model Real-World Objects

In our discussion of LISP (Chapter 9, Section 9.3), we saw that atoms are often used to model
objects in the real world. That is, like real-world objects, atoms in LISP can have properties

412 OBJECT-ORIENTED PROGRAMMING: SMALLTALK

and be related in various ways. This allows many programs to be viewed as a model or sim-
ulation of some aspects of the real world.

We have mentioned that many of the ideas in Smalltalk derive from Simula, an exten-
sion of Algol intended for simulation. These ideas include internally represented objects as
instances of classes (internally represented objects are discussed in Chapter 7, Section 7.4).
It is thus no surprise that Smalltalk objects are well suited to modeling real-world objects.
In particular, the data values inside an object can represent the properties and relations in
which that object participates, and the behavior of the Smalltalk object can model the be-
havior of the corresponding real-world object. Therefore, in Smalltalk, the dominant para-
digm (or model) of programming is simulation.

=t

Classes Group Related Objects

In the real world, all of the objects that we observe are individuals; every object differs from
every other in a number of ways. However, if we are to be able to deal effectively with the
world, we must be able to understand why objects act the way they do so that we will be
able to predict their actions in the future. If every object were completely different from
every other one and every action and effect were unique, then there would be no possibility
of understanding the world or acting effectively. This is not the case, however; objects have
many properties in common and we observe broad classes of objects acting similarly. There-
fore, we focus on these common properties and behaviors and abstract them out. This, of
course, is just an application of the Abstraction Principle. The resulting abstraction, or class,
retains the similar properties and behaviors but omits the particulars that distinguish one in-
dividual from another.

This is exactly the situation we find in Smalltalk. The class definition specifies all of
the properties and behaviors common to all instances of the class, while the instance vari-
ables in the object contain all of the particular information that distinguishes one object from
another. The behavior of the members of a class, the set of all messages to which the mem-
bers of that class respond, is called the protocol of the class. The protocol is determined by
the instance methods in the class definition.

This approach is ideally suited to simulation. When we model some aspect of the real
world, we are trying to find out what would happen if certain conditions held. To do this it
is necessary to have laws of cause and effect that describe how certain kinds of objects act
in certain situations. In other words, it is necessary to know the relevant behavior of certain
classes of objects. It is exactly this information that is modeled by a Smalltalk class: the be-
havior common to all of the instances of the class.

Subclasses Permit Hierarchical Classification

We have seen how the Abstraction Principle can be applied to individual objects: The prop-
erties common to a group of objects are abstracted out and associated with the class of those
objects. The Abstraction Principle can also be applied to classes themselves. Consider the
class pen, which abstracts out the common properties of objects like Scribe and an-
otherScribe. We have also seen the class box, which abstracts the common properties
of boxes. Similarly, the class window might include all of the window objects that can be
displayed on the screen, such as the window that contains the definition of box. Notice that

12.3 DESIGN: CLASSES AND SUBCLASSES 413

class name displayObject

instance variable names loc

instance messages and methods

goto: newLoc |l
self erase.
loc < newloc.
self show

Figure 12.4 Example of Superclass DisplayObject

all of these classes have certain properties in common, for example, coordinates that deter-
mine their positions on the screen. We can presume that they also respond to certain com-
mon messages, such as to alter their position and to appear and disappear. The Abstraction
Principle tells us that we should abstract out these common properties and give them a name
such as displayObject. Then, pen, box, and window will be subclasses of the class
displayObject. Conversely, displayObject would be called a superclass of the
classes pen, box, and window. Figure 12.4 shows part of the definition of display
Object and Figure 12.5 shows how box can be made a subclass of displayObject.

Notice that in the method for shape in the definition of box, we make use of the vari-
able 1oc, which is defined in the superclass. That is, the instance variables of the superclass
are inherited by all of its subclasses. Similarly, any methods defined in the superclass (such
as goto:) are also inherited.

Smalltalk would violate the Zero-One-Infinity Principle of it allowed only two levels of
classes, that is, superclasses and subclasses, but there is no such limitation. Classes can always
be refined by defining subclasses within them. Conversely, classes can be grouped into more
inclusive superclasses. Indeed, there is one grand superclass, called object, that includes all
other classes as its subclasses. Therefore, all objects in the Smalltalk system are instances (per-
haps indirectly) of the class object. The end result of all of this is a unified hierarchical clas-
sification of all objects known to Smalltalk. We can visualize this as shown in Figure 12.6. At
the lowest level we have individual objects, and at all levels above them we have classes of
objects. Each class is a subclass of all of the classes above it, and each class is a superclass of
all of the classes below it. The actual Smalltalk class hierarchy is much richer than suggested
above; Table 12.1 shows part of the Smalltalk-80 hierarchy of system (i.e., built-in) classes.

class name box
superclass displayObject
instance variable names tilt size scribe
instance messages and methods

shape | |
scribe penup; goto: loc; turnTo: tilt; pendn.
4 timesRepeat: [scribe go: size; turn: 90]

Figure 12.5 Example of Subclass Box

414 OBJECT-ORIENTED PROGRAMMING: SMALLTALK

Object Figure 12.6 Example of Hierarchical Classification
of Objects
number displayObject indexedCollection
- I
‘ box pen window [
w |
Scribe another Scribe

Behavior Can Be Extended or Modified

As the previous example indicates, subclasses allow the behavior of a class to be extended.
For example, boxes respond to messages in addition to those to which displayObjects
respond. Thus, the behavior of boxes is an extension of the behavior of displayObjects.
The subclass mechanism facilitates building classes on already existing classes. In this case,
the goto: method, once written, can be used by any new class that is made a subclass of
displayObject; it is never necessary to rewrite this method.

Subclasses can build upon the behavior of their superclasses; they can also modify it.
Recall that in block-structured languages, a declaration of an identifier overrides any decla-
rations of that same identifier in surrounding environments. The same rule applies to meth-
ods: A definition of a method in a subclass overrides any definitions of that method that may
exist in its superclasses. Thus, if the standard definition of goto: in displayObject
were inappropriate for windows, then this method could be redefined in window as shown:

class name window
superclass displayObject
instance variable names size scribe text
instance messages and methods

goto: loc Il
... new definition of goto: ...

Is the old definition of goto: inaccessible to window? No, it is not. Recall that an ob-
ject can send a message to itself with an expression like self goto:loc.It is also pos-

12.3 DESIGN: CLASSES AND SUBCLASSES 415

TABLE 12.1 Smalltalk-80 System Class Hierarchy (Partial)

Object III. DisplayObject
I. Magnitude A. DisplayMedium
A. Character 1. Form
B. Date a. Cursor
C. Time b. DisplayScreen
D. Number B. InfiniteForm
1. Float C. OpaqueForm
2. Fraction D. Path
3. Integer 1. Arc
a. LargeNegativelInteger 2. Curve
b. LargePositivelInteger a. Circle
c. SmallInteger 3. Line
II. Collection 4. LinearFit
A. SequenceableCollection 5. Spline
1. LinkedList IV. Behavior
2. ArrayedCollection V. BitBlt
a. Array A. Pen
b. Bitmap
c. RunArray
d. String
e. Text
f. ByteArray

3. Interval
4. OrderedCollection

B. Bag
C. MappedCollection
D. Set

sible for an object to send a message to itself in its capacity as a member of its superclass.
For example, if the goto: method in window needed to make use of the goto: method
in displayObject, we could write

goto: loc \ \

super goto: 1loc

3
The name super is automatically bound to the same object as self, but the object is con-

sidered as a member of its superclass. If we had written self goto: loc instead, we
would have caused a recursive invocation of the goto: method for windows.

Thus, although definitions in a subclass cover up definitions in the superclass, the su-
perclass definitions can be uncovered by an explicit request. This simplifies building new
software on already existing software and makes Smalltalk a very extensible system.

Overloading Is Implicit and Inexpensive

Since objects are responsible for responding to messages, there is no reason why objects of
different classes can’t respond to the same messages. For example, in the expression 3 +

416 OBJECT-ORIENTED PROGRAMMING: SMALLTALK

5 the object 3 responds to the message +5 by returning the object 8. Similarly, in the ex-
pression "book” + “"keeper” the object “book” responds to the message +
"keeper” by returning the object “bookkeeper”. In effect ‘+’ has been overloaded to
work on both numbers and strings. Notice, however, that there is no operator identification
problem because the system always knows the class to which an object belongs, and this
class determines the method that will handle the message. Thus, operators can be automati- |
cally extended to handle new data types by including methods for these operators in the class
defining the data type.

Classes Allow Multiple Representations of Data Types

Classes also simplify having several concrete representations for one abstract data type. For
example, we can define a class indexedStack that implements stacks as arrays. Objects
that are instances of indexStack respond to messages such as pop, push: x, and empty.
Similarly, we can define a class 1inkedStack that implements stacks as linked lists and
that responds to the same messages. Each of these classes is a concrete representation of the
same abstract type, stack. The key point is that any program that works on linked-
Stacks will also work on indexedStacks, because they respond to the same messages.
Thus, in accordance with the Information Hiding Principle, we have hidden the imple-
mentation details in the class. Also notice that classes obey the Manifest Interface Principle
since the interface to an object is just its protocol: the set of messages to which it responds.
Therefore, objects with the same protocol (interface) can be used interchangeably.

Objects Can Be Self-Displaying

The problem of displaying objects demonstrates the extensibility and maintenance advantages
of the Smalltalk class structure. Suppose that we define a new class complex that represents
complex numbers. It is desirable that we be able to print out complex numbers, just as we can (
print out real numbers and integers. The problem is that in most languages it would be nec-
essary to modify the print procedure to accomplish this; a new case would have to be added
to handle complex numbers. This violates the Information Hiding Principle since it forces us
to scatter the implementation details of complex numbers around the system.

Smalltalk has a simpler solution: We just require that every displayable object respond
to the message print by returning a character string form of itself. For example, we could
define complex numbers as shown in Figure 12.7. Then, if w were the object representing
1 + 2i and z were the object representing 2 + 5i, sending the message print to the object
returned by w + z,

(w + z) print
would return the string.

”3 + 7ill

Similarly, we could define the print method for boxes to show their location, tilt, and
size:

12.3 DESIGN: CLASSES AND SUBCLASSES 417

class name complex

instance variable names realPt imagPt

instance messages and methods

print | |
frealPt print + "+" + imagPt print + "i".

+yll
Figure 12.7 Print Method for Complex Numbers
print ||
T "box at ” + 1loc print
+ ", size=" + size print
+ 7, tilt=" + tilt print.

Thus, if we entered B1 print, we would see
box at 100@500, size=100, tilt=0

We are, of course, assuming that points respond to print with a string of the form "x@y”.

Methods Accept Any Object with the Proper Protocol

The fact that a method will work on any object with the appropriate protocol is one of the
factors that make Smalltalk such a flexible, extensible system. It is possible at any time to
define a new class and have many existing methods already applicable to it. For example,
we might have a number of methods that operate on numbers by using the arithmetic oper-
ators. These methods might include expressions such as (x+y) *x. If we later defined a
class polynomial that responded to messages +y, *v, and so on, then polynomial objects
could be passed to these methods. This works because in the expression x+y the object x is
responsible for responding to the message +y; if x is a number, it does simple addition; if
x is a polynomial, it does polynomial addition. The method containing x+y does not have
to know whether x and y are real numbers, polynomials, complex numbers, or any other ob-
jects that respond to the arithmetic operators.

Operators Are Handled Asymmetrically

Unfortunately, this interpretation of an operator expression (e.g., 3 + 5) as sending a mes-
sage (+ 5) to the operator’s first argument (3) creates an awkward asymmetry. To see why,
suppose we wanted to define string catenation to coerce integers to strings. Thus, if the vari-
able pageNo referred to the integer 5, we would expect “page” + pageNo to return the
string “page 5”. The + method for strings could accomplish this by sending a message
such as print to the method’s argument. This all works as we would hope. However, by
the Syntactic Consistency Principle, we would also expect coercion to take place in the first

418 OBJECT-ORIENTED PROGRAMMING: SMALLTALK

argument, so that if we wrote pageNo + ” pages” we would get the string ”5 pages” .
However, for this to take place, it is necessary for the + method of integers to recognize that
its second argument is a string, and therefore to convert itself to a string.

This is certainly doable, but it results in a breakdown in modularity; not only must strings
be aware that they may be added to integers, but also integers must be aware they can be
added to strings. If we further extend + to polynomials, then not only must polynomials be '
aware they can be added to integers (and reals), but integers (and reals) must be aware they
can be added to polynomials. This situation makes it difficult to take a class (such as in-
teger) as given and then extend the system by building other classes (e.g., string, poly-
nomial) upon it. Some newer object-oriented languages, which use an external represen-
tation of objects (recall p. 276), avoid this problem, although there is still a multiplicative
number of type interactions (see Sections 12.4 and 12.6). (What we actually have here is a
lack of orthogonality, since the definition of addition should be independent of the integer-
to-string coercion.

Hierarchical Subclasses Preclude Orthogonal Classifications

We will now discuss one of the limitations of a strictly hierarchical subclass—superclass re-
lationship. Consider an application in which Smalltalk is being used for the computer-aided
design of cars. We will assume that this system assists in the design in several different ways.
For example, it helps in producing engineering drawings by allowing the user to manipulate
and combine diagrams of various parts, and it assists in cost and weight estimates by keep-
ing track of the number, cost, and weight of the parts.

Presumably each part that goes into a car is an object with a number of attributes. For
example, a bumper might have a weight, a cost, physical dimensions, the name of a manu-
facturer, a location on the screen, and an indication of its points of connection with other
parts. Similarly, an engine might have weight, cost, dimensions, manufacturer, horsepower,
and fuel consumption. If we presume that our display shows only the external appearance of
the car, then an engine will not have a display location.

The next step is to apply the Abstraction Principle and to begin to classify the objects
on the basis of their common attributes. For example, we will find that many of the classes
(e.g., bumpers, roofs, grills) will have a 1oc attribute because they will be displayed on the
screen. We can also presume that these objects respond to the goto: message so that they
can be moved on the screen. This suggests that these classes should be made subclasses of
displayObject because this class defines the methods for handling displayed objects.
Thus, our (partial) class structure might look something like that in Figure 12.8. On the other
hand, many of the objects that our program manipulates have cost, weight, and manu-
facturer attributes. This suggests that we should have a class called, for example, in-
ventoryItem that has these attributes and that responds to messages for inventory con-
trol (e.g., reportStock, reorder). This leads to the class structure shown in Figure 12.9.

Now we can see the problem. Smalltalk organizes classes into a hierarchy; each class
has exactly one immediate superclass. Notice that in our example several of the classes (e.g.,
bumper and grill) are subclasses of two classes: displayObject and invento-
ryItem. This is not possible in Smalltalk; when a class is defined, it can be specified to be
an immediate subclass of exactly one other class.

12.3 DESIGN: CLASSES AND SUBCLASSES 419

object Figure 12.8 Example of
displayObject Class Hi-
erarchy
number displayObject indexedCollection
box pen bumper grill roof window

What are the consequences of this? We can choose either displayObject or in-
ventoryItem to be the superclass of the other. Suppose we choose displayObject;
then our class structure looks as shown in Figure 12.10. This seems to solve the problem.
The display methods occur once—in displayObject—and the inventory control meth-
ods occur once—in inventoryItem. Unfortunately, this arrangement of the classes has
a side effect: Some objects that are never displayed (e.g., engines and paint) now have the
attributes of a displayed object, such as a display location. This means that they will respond
to messages that are meaningless, which is a violation of the Security Principle. The alter-
native, placing displayObject under inventoryItem, is even worse since it means
that objects such as pens and boxes will have attributes such as weight, cost, and man-
ufacturer! Thus, we seem to be faced with a choice: either violate the Security Princi-
ple by making either displayObject or inventoryItem a subclass of the other or vi-
olate the Abstraction Principle by repeating in some of the classes the attributes of the others.

What is the source of this problem? In real life we often find that the same objects must
be classified in several different ways. For example, a biologist might classify mammals as

object

number displayObject inventoryltem indexedCollection

paint bumper grill engine washers roof seatCovers

Figure 12.9 Example of inventoryItem Class Hierarchy

420 OBJECT-ORIENTED PROGRAMMING: SMALLTALK

object
number displayObject indexedCollection
|
-t
box pen inventoryltem window
paint bumper grill engine washers seatCovers

Figure 12.10 Limitations of Hierarchical Classification

primates, rodents, ruminants, and so forth. Someone interested in the uses of mammals might
classify them as pets, beasts of burden, sources of food, pests, and so forth. Finally, a zoo
might classify them as North American, South American, African, and so forth. These are
three orthogonal classifications; each of the classes cuts across the others at “right angles”
(see Figure 12.11). (We have shown only two of the three dimensions.)

In summary, a hierarchical classification system, such as provided by Smalltalk, precludes
orthogonal classification. This in turn forces the programmer to violate either the Security
Principle or the Abstraction Principle. In essence, Smalltalk ignores the fact that the appropri-
ate classification of a group of objects depends on the context in which those objects are viewed.

C Pets

C Beasts of burden

(Sources of food

N N N

C Pests

Figure 12.11 Example of Orthogonal Classification

12.4 DESIGN: OBJECTS AND MESSAGE SENDING 421

Some experimental extensions of Smalltalk have attempted to remedy this problem by
providing a “multiple inheritance” capability that allows an object to belong to several classes

at once.

Multiple Inheritance Raises Difficult Problems

Some experimental extensions of Smalltalk have attempted to remedy this problem by pro-
viding a multiple inheritance capability, which allows a class to be an immediate subclass
of more than one superclass. Multiple inheritance is also supported in the more-recent ob-
“ ject-oriented extensions of some older languages, such as C++ and CLOS, the Common
Lisp Object System (see Section 12.6). However, multiple inheritance raises many issues,

which are not easy to solve. For example, if an instance variable or method is mherited from
two or more superclasses, do we select just one (and how do we select which), or do we get
them all (and then how do we discriminate between them)? How do we handle a situation
in which a class is a superclass in more than one way? For example, B may be declared a
subclass of A, and C may be declared a subclass of both A and B. C may inherit instance
variables and methods from A in two different ways, directly from A and indirectly via B.
Expressed in this abstract way, it may seem a pathological situation, but there are good rea-
sons for class relationships of this kind, and they can also occur as unintentionally in the
object-oriented design of large software systems. It is not our purpose to address these is-
sues here, but only to alert you of the design complexities facing you on both sides of the
multiple inheritance question.

12.4 DESIGN: OBJECTS AND MESSAGE SENDING

The Primary Concept Is the Object

As we have seen, everything in Smalltalk is an object. This design decision satisfies both
the Regularity and Simplicity Principles. In Smalltalk even classes are objects, that is, they
are instances of the class named class. This fact reflects a design principle, which Kay has
expressed, “take the hardest and most profound thing you need to do, make it great, and then
build every easier thing out of it.” It represents the conscious extrapolation of the ampliative
aspects of a new technology. (This principle is reflected in all the fifth-generation paradigms.)

What exactly is an object? Objects have characteristics of both data and programs. For
example, objects are the things that represent quantities, properties, and the entities modeled
by the program. In Smalltalk numbers, strings, and so on, are all objects. Objects also have
some of the characteristics of programs; like programs, they do things. For example, Scribe
could be made to move, draw lines, change its pen status, and so on. In a conventional lan-
guage, programs are active and data elements are passive; the program elements act on the
data elements. In an object-oriented language like Smalltalk, the data elements are active;
they respond to messages that cause them to act on themselves, perhaps modifying them-
selves, perhaps modifying or returning other objects. Another way of saying this is that con-

ventional languages are function orienied, 1hings ars assomplishes by passing objgsss 19

422 OBJECT-ORIENTED PROGRAMMING: SMALLTALK

| functions. In an object-oriented language, things are accomplished by sending messages to

| objects.

l The set of messages to which an object can respond is called its protocol. The protocol

’ is determined by the instance methods of the class of which it is an instance. When an ob-
ject is sent a message, the Smalltalk system produces an error diagnostic if that message is

i[not part of the object’s protocol. This run-time checking is necessary to satisfy the Security

| Principle.

l

\

r - Names Are Not Typed

j Most of the programming languages we have studied associate a definite type with each name

| (variable or formal parameter). Strong typing then ensures that only objects of the same type
can be bound to these names. Smalltalk has a different strategy: No names are typed, and
any object can be bound to any name. Type checking occurs when a message is sent to the
object bound to a name. If the object responds to that message (i.e., the message is in its
protocol), then the message is legal; otherwise it is not. Thus, Smalltalk performs dynamic
type checking, like LISP, as opposed to static type checking, like Pascal and Ada.

Notice that dynamic typing does not imply weak typing. Strong typing refers to the fact
that type abstractions are enforced. This enforcement may be done predominantly at
compile-time (static typing) or predominantly at run-time (dynamic typing), so long as it is
done. Smalltalk, like LISP, has strong, but dynamic, typing.

In previous chapters we have had a great deal to say about the security advantages of
static type checking. Does this mean that Smalltalk violates the Security Principle? No, it
does not. Since the Smalltalk system will allow a message to be sent to an object only if that
object has a method to respond to the message, it is not possible for type violations to cause
system crashes. Thus, the system and the user’s program are secure.

Another reason for static type checking is that it allows earlier error detection. Specifi-
cally, it allows errors to be detected at compile-time, when the compiler can give an intelli-
gible diagnostic, rather than at run-time, when only the machine code is available. This ar-
gument does not apply to a system like Smalltalk, however. Since all of the source code is
available at run-time, the Smalltalk system can produce run-time diagnostics in terms of the
source code of the program.

It might also be argued that early error detection saves both programmer and computer
time since in a compiled language the entire program, or at least one module, must be re-
compiled each time an error is found. In Smalltalk, however, a run-time error causes the pro-
gram to be suspended so that the programmer can investigate its cause. An offending class

/ can be edited and quickly recompiled, and execution of the program can be resumed. Thus,
in the Smalltalk environment, static type checking affords little savings in time.

Another argument for static typing is that it improves the efficiency of storage utiliza-
tion since a character, for example, occupies less storage than a floating-point number. In
Smalltalk, however, every object is accessed through an object reference, that is, a pointer.
Therefore, all variables and parameters occupy the same amount of storage—one pointer.

A final argument for static typing is documentation. It is easier to understand a program
if each variable and parameter has a type associated with it; this declares the use to which
the programmer intends to put that variable or parameter. The designers of Smalltalk claim

12.4 DESIGN: OBJECTS AND MESSAGE SENDING 423

that well-named variables provide just as good documentation. For example, calling a para-
meter anInteger makes its intended value just as clear as a typed declaration liken: in-
teger.

The last point in favor of Smalltalk’s dynamic typing is flexibility. We have already seen
how any object with the proper protocol can be passed to a method. This makes it much eas-
ier to build on existing software in the Smalltalk system. This can be considered a major ap-
plication of the Abstraction Principle since it allows common algorithms to be factored out
of a system without complicated mechanisms like Ada’s generics.

¥ Exercise 12-6*: Write a short report on the pros and cons of static and dynamic typ-
ing. Evaluate each of the above arguments in favor of dynamic typing in Smalltalk. For-
mulate your own position on typing and defend it.

® Exercise 12-7*: Write a short report evaluating Ada’s object-oriented typing extension.

Messages Are Essentially Procedure Invocations

Recall our discussion of the internal and external representation of objects in connection
with Ada (p. 276). We can see that Smalltalk has internal objects since both the fields of the
object, such as size and loc, and the procedures for manipulating the object, such as
goto:, and show, are part of the object. In other words, there is not much difference be-
tween the Smalltalk expression

Scribe goto: 1loc
and the Ada statement
Scribe.goto(loc) ;

which invokes the goto procedure in the package Scribe with the argument loc.

Let’s investigate this similarity in more detail. In Smalltalk, when a class is defined, we
specify the variables that are to be duplicated in each instance of the class and the messages
to which all instances of the class will respond. Thus, the class definition in Figure 12.2 is
similar to the Ada generic package shown in Figure 12.12. Notice that each method has been
translated into a public procedure and each instance variable into a private variable (of course,
we have had to/add type information, so the translation is not exact).

Just as in Smalltalk, in Ada the process of instantiation is separate from the process of
class definition. The Smalltalk instantiations

Bl <~ box newAt 200@500
B2 «<—box newAt 800@500

are similar to the Ada package declarations

package Bl is new Box (Initial_Loc => (200,500));
package B2 is new Box (Initial_Loc => (800,500)):;

A major difference between objects in Ada and Smalltalk is that Smalltalk allows the
dynamic instantiation of internally represented objects, whereas Ada does not. This can be

424 OBJECT-ORIENTED PROGRAMMING: SMALLTALK

generic Figure 12.12 Generic Package Simi-
Initial_Loc : Point; lar to a Class
package Box is
procedure Shape;
procedure Show;
procedure Erase;
procedure Grow (Amount : Integer);
end Box;

package body Box is i

Loc : Point := Initial_Loc;
Tilt : Float;
Size : Float;
Scribe : Pen;

procedure Shape is

end Shape;

end Box;

seen in the above example; the instantiation of the packages B1 and B2 is accomplished by
declarations, the number of which is limited by the written form of the program. In Smalltalk,
instantiation is done at run-time, by sending an instantiation message to a class. Thus,
Smalltalk is more flexible, since it is possible to decide at run-time how many instances of
a class are required. In Ada this can be done only with external objects (Chapter 7, Section
7.4), which are more limited since they cannot respond directly to messages. We will see in
Section 12.6 that Ada 95 has been extended to include more direct support for object-
oriented programming.

B Exercise 12-8: Complete the definition of the Ada package Box.

B Exercise 12-9*: Discuss the trade-offs between statically and dynamically instantiated
objects.

M Exercise 12-10*: Show that anything that can be accomplished with external objects
can also be accomplished with internal objects, and vice versa.

There Are Three Forms of Message Template

You have seen that messages are essentially procedure invocations, although the formats al-
lowed for messages are a little more flexible. In most languages parameters are surrounded
by parentheses and separated by commas; in Smalltalk parameters are separated by keywords.
For example, the Smalltalk message:

12.4 DESIGN: OBJECTS AND MESSAGE SENDING 425

newBox setLoc: initialLocation tilt: 0 size: 100 scribe: pen new
is equivalent to the Ada procedure call:

NewBox.Set (Initial_Location, 0, 100, Pen.New);

although the similarity is more striking if we use position-independent parameters:

NewBox.Set (Loc => Initial_Location, Tilt => 0,
Size => 100, Scribe => Pen.New);

Note, however, that Smalltalk is not following the Labeling Principle here since the para-
meters are required to be in the right order even though they are labeled.

The message format, keywords followed by colons, can be used if there are one or more
parameters to the method. What if a method has no parameters? In this case, it would be
confusing to both the human reader and the system if the keyword were followed by a colon.
This leads to the format that we have seen for parameterless messages:

Bl show

Omitting the colon from a parameterless message is analogous to omitting the empty paren-
theses ()’ from a parameterless procedure call in Ada.

These message formats are adequate for all purposes since they handle any number of
parameters from zero on up. Unfortunately, they would require writing arithmetic expres-
sions in an uncommon way. For example, to compute (x + 2) X y we would have to write?

(x plus: 2) times: y

To avoid this unusual notation, Smalltalk has made a special exception: the arithmetic op-
erators (and other special symbols) can be followed by exactly one parameter even though
there is no colon. For example, in

X + 2 * vy

the object named x is sent the message + 2, and the object resulting from this is sent the
message * y. Thus, this expression computes (x + 2)y; notice that Smalltalk does not obey
the usual precedence rules (a concession to the Regularity Principle).

In summary, there are three formats for messages:

1. Keywords for parameterless messages (e.g., BL show)

2. Operators for one-parameter messages (e.8., X + V)

3. Keywords with colons for messages with one or more parameters (e.g., Scribe grow:
100)

Notice that this format convention fits the Zero-One-Infinity Principle since the only special
cases are for zero parameters and one parameter. However, the fact that these cases are han-
dled differently from the general case violates the Regularity Principle. This is a conscious

3 The parentheses are necessary, otherwise we would be sending to x a message with the template
plus:times:.

426 OBJECT-ORIENTED PROGRAMMING: SMALLTALK

trade-off that the designers of Smalltalk have made so that they can use the usual arithmetic
operators. We know this because earlier versions of Smalltalk (e.g., Smalltalk-72) had a uni-
form method for passing parameters that did not depend on the number of parameters.

B Exercise 12-11*: Discuss Smalltalk’s message formats. Given that Smalltalk’s con-
ventions still violate the usual precedence rules for arithmetic operators, was it wise to
make a special case of them? Either defend the conventions adopted by Smalltalk or pro-
pose and defend a different set of your own conventions. '

How an object behaves when it receives a message depends on two things: the method de-
fined for that message (which is part of the object’s class and never changes) and the con-
tents of the variables visible to the method. Since it is the instance variables that are differ-
ent in different instances of a class, it is predominantly the instance variables that determine
the individual behavior of objects. For example, the orientation of Scribe after it receives the
message turn: 90 depends on its orientation before it received that message, which is
contained in an instance variable. There is no global table that holds the state of all of the
instances of the class pen. Rather, each pen is responsible for keeping track of its own state
and responding to messages appropriately.

In general, each object acts as an autonomous agent that is responsible for its own be-
havior but is not responsible for the behavior of any other objects. All of the information rel-
evant to the individual behavior of an object is contained in that object; all of the informa-
tion relevant to the similar behavior of a class of objects is contained in the class. Thus, the
object-oriented style of programming supports the Information Hiding Principle in an es-
sential way.

f
Objects Hold the State of a Computation ’

The Smalltalk Main Loop Is Written in Smalltalk

Like most interactive systems, Smalltalk is in a loop: Read a command, execute the com-
mand, print the result, and loop. This can be written in Smalltalk as follows:

true whileTrue: [Display put: user run]

This is an infinite loop that repeatedly executes the expression Display put: user
run. The variable user contains an object called the user task; this object responds to the
message run by reading an expression, evaluating it, and returning a string representing the
result. The object Display represents the display screen and responds to the message put :
by writing out the argument string.

The simplest user task is an instance of the class userTask shown here:

class name userTask
instance messages and methods

run ||
Keyboard read eval print

-

12.4 DESIGN: OBJECTS AND MESSAGE SENDING 427

Keyboard is the object responsible for the keyboard on which the user types; it responds
to the message read by printing a prompt and returning a string containing the characters
typed by the user. For example, if the user types x + 2, then the object returned by key-
board read is the string “x + 2. Next, it is necessary that we know that strings re-
spond to the message eval by calling the Smalltalk compiler and interpreter to evaluate
themselves. Thus, assuming x is bound to 5, the result of “x + 2” eval will be the ob-
ject 7. We have already seen that objects respond to the message print by returning a char-
acter string representation of themselves, so the result of 7 print is the string ”7~. This
is returned as the value of user run and hence printed on the user’s display by the main
loop of the Smalltalk system (as a result of executing Display put: user run).

Concurrency Is Easy to Implement

Recall that Smalltalk took many ideas from the simulation language Simula-67. Of course,
in the real world many things happen simultaneously, or concurrently. Therefore, in a lan-
guage intended to simulate aspects of the real world, it is important to be able to have sev-
eral things going on at the same time. We have already seen an example of programming
language support for concurrency: Ada’s tasks. Message sending in Smalltalk is similar to
the “rendezvous” in Ada. We will also see that the autonomous nature of Smalltalk’s objects
makes them ideal for concurrent programming.

How can we go about doing concurrent programming in Smalltalk? We saw how the
main loop of the Smalltalk system ran the user task on every iteration. This suggests that we
can do concurrent programming by having the main loop run each of a set of tasks. To do
this we will assume that sched is the name of a set that contains all of the objects that
are scheduled to be run concurrently. Therefore, we want to run each object Task in sched,
that is, for each Task in sched we must evaluate Task run. By a task we mean any-
thing that responds to the message run.

Although we could write a conventional loop for this, it is easier to use a variant of func-
tional programming provided by Smalltalk. Specifically, a set S responds to S map: B by ap-
plying the block B to every element of the set. This is analogous to the LISP expression
(mapcar B §) (see Chapter 10, Section 10.1). Finally, we need B to be a block that takes
any object Task and sends it the message run:

[: Task \ Task run]

This is analogous to a lambda expression (Chapter 10, Section 10.1) in LISP: (lambda (Task)
(task run)). Thus, we can define a class for scheduling concurrent tasks as follows:

class name scheduler

instance messages and methods

run | |
sched map: [: Task | Task run]

Every time we send the run message to a scheduler object, that object runs all the tasks
in the sched set.

T s

428 OBJECT-ORIENTED PROGRAMMING: SMALLTALK

class name spinner

instance variables theBox rate

class messages and methods

newAt: initLoc rate: R | |
theBox < box newAt: initLoc.
rate < R.
theBox show.
sched add: self

instance messages and methods

run ||
theBox tilt: rate

Figure 12.13 Example of a Concurrent Class

To request that an object T be run concurrently with the other objects, it is only neces-
sary to add it to sched:

sched add: T

Similarly, an object can be terminated (or temporarily suspended) by deleting it from sched.
This is just a very simple form of first-in—first-out scheduling; more sophisticated schedul-
ing strategies can be implemented by keeping the objects in an ordered list and reordering
the list according to some priority system.

B Exercise 12-12: Figure 12.13 shows a simple example of concurrency—a class called
spinner. Explain what the user would see on the screen after the following two ex-
pressions are entered:

spinner newAt: 500@200 rate: 1.
spinner newAt: 500@600 rate: 3

12.5 IMPLEMENTATION: CLASSES AND OBJECTS

Overview of the Smalltalk-80 System

In this section we will discuss several important issues in the implementation of Smalltalk.
The first is portability: Most of the Smalltalk system is written in Smalltalk. This includes
the compiler, decompiler, debugger, editors, and file system, which accounts for approxi-
mately 97% of the code of the Smalltalk-80 system. A major reason that Smalltalk can be
programmed in Smalltalk is that most of the implementation data structures, such as activa-
tion records, are Smalltalk objects. This means that they can be manipulated by Smalltalk
programs and have the properties of Smalltalk objects (e.g., they are self-displaying).

The part of Smalltalk that is not portable is called the Smalltalk-80 Virtual Machine; its
size is between 6 and 12 kilobytes of assembly code. The Smalltalk designers claim that it

12.5 IMPLEMENTATION: CLASSES AND OBJECTS 429

requires about one man-year to produce a fully debugged version of the Smalltalk Virtual
Machine, which makes Smalltalk an excellent example of the Portability Principle.
The Smalltalk Virtual Machine has three major components:

* Storage Manager
* Interpreter
* Primitive Subroutines

The Storage Manager is the abstract data type manager for objects. As required by the
Information Hiding Principle, it encapsulates the representation of objects and the organiza-
tion of memory. The only operations that other modules can perform on objects are those
provided by the Storage Manager:

* Fetch the class of an object
* Fetch and store the fields of objects
* Create new objects

Of course, if the Storage Manager is to be able to create new objects, it must be able to get
free space in which to put them. Thus, another responsibility of the Storage Manager is col-
lecting and managing free space. For this purpose it uses a reference counting strategy with
extensions for cyclic structures (see Chapter 11, Section 11.2).

The Interpreter is the heart of the Smalltalk system. Although it would be possible to
interpret the written form of Smalltalk directly, it is more efficient if the interpreter operates
on an intermediate form of the program. Recall that we did essentially this with our sym-
bolic pseudo-code interpreter in Chapter 1: We translated a more human-oriented written
form into the internal numeric codes required by the interpreter. The operations of this in-
termediate language are essentially the operations of the Smalltalk Virtual Machine. In other
words, the interpreter is essentially the abstract data type manager for methods.

The last component of the Smalltalk Virtual Machine is the Primitive Subroutines pack-
age. This is just a collection of the methods that, for performance reasons, are implemented
in machine code rather than Smalltalk. They include basic input-output functions, integer
arithmetic, subscripting of indexable objects (e.g., arrays), and basi¢ sereen graphics OpCras
tions.

There are three central ideas in Smalltalk: objects, classes, and message sending. We
will now investigate the implementation of each of these.

Object Representation

Much of Smalltalk’s implementation can be derived by application of the Abstraction and
Information Hiding Principles. For example, the representation of an object must contain just
that information that varies from object to object; information that is the same over a class
of objects is stored in the representation of that class. What is the information that varies be-
tween the instances of a class? It is Just the instance variables. The information stored with
the class includes the class methods and instance methods.

Notice, however, that we will not be able to access the information stored with the class

T —

430 OBJECT-ORIENTED PROGRAMMING: SMALLTALK

of an object unless we know what the class of that object is. Therefore, the representation
of an object must contain some indication of the class to which the object belongs. There
are many ways to do this, and several have been used by the various Smalltalk implemen-
tations. The simplest is to include in the representation of the object a pointer to the data
structure representing the class.

Let’s consider the example shown in Figure 12.14, which shows the representation of
two boxes, B1 and B2. To keep the figure clear, we have abbreviated or omitted some of
the component objects. For example, the representation of the object 500@200 is shown,
but the representation of 500@600 is abbreviated. Also, we have shown the names of the
instance variables, although there is no reason actually to store them in the representation of
objects. Finally, the representation of class objects is omitted because this topic is discussed
next.

Notice that in addition to the instance variables and class description (c.d.), each ob-
ject has a length field (1en). This is required by the storage manager for allocating, deallo-
cating, and moving objects in storage.

B Exercise 12-13: Considerable overhead is associated with the class description (c.d.)
and length fields in the representation of objects. For example, 50% of the space required
for a point object is used for the length and class description fields. An alternative to
this is to divide memory into a number of zones with each zone being dedicated to hold-
ing the instances of just one class. Then, from the address of an object the storage man-
ager can tell the zone it is in and, hence, both its class and length. This effectively en-
codes the class and length information as part of the address of an object. Analyze this
implementation technique in detail. Describe the trade-offs between this technique and
that descri<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>