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INTRODUCTION

There are a number of issues connected wit h
the retention or deletion of the goto statement

in programs or programming languages, and w e
attempt to set the stage for a discussion of thes e

issues by giving a brief history of the goto con-
troversy . The possibility of eliminating the goto

has both theoretical and practical aspects . It is

of interest to discover that the goto does no t
appear in most formal systems of computability
theory, but does appear in programming languag e

extensions of these systems . Since programmin g
style is an important component of the controversy ,
we give one example of the influence of a hig h

level language on programming style, and its re-
lation to the goto statement . Finally, a summar y

of arguments both for and against the goto i s

given .

HISTORY

The proposition that there might be somethin g

wrong with the goto statement, one of the pillar s

of practical programming since the invention o f
FORTRAN, has slowly penetrated the consciousnes s

of programmers since Dijkstra ' s famous letter i n
the Communications of the ACM (D4) . Actually ,
Professor Dijkstra considered programming language s

without benefit of either assignment or goto in a
paper presented at the 1965 IFIP Congress (D2) . He

concluded that a language without the former wa s

elegant but inadequate . As to the latter, he enun-
ciated the criterion that the quality of a program-

mer was inversely proportional to the density o f

2oto statements in his program . While admittin g
the possibility of a conflict between convenienc e

and efficiency, he made the following points, whic h

are paraphrased below,

1. Since transfer of control is subsumed b y

more powerful notions, to wit :
sequential executio n
procedure call and return
conditional expression (statement )

repetition clause (for statement
in ALGOL, DO group in PL/I )

is not the programmer led astray by givin g
him control over it ?

2. The solution of the halting problem (th e
determination of whether a given program ter-

minates) is made difficult by the unrestricte d
use of the goto statement . After eliminatio n

of the goto, there are only two ways in whic h

a program may fail to stop : either by infinit e
recursion, or by the repetition clause ,

Val Schorre reported in 1966 (S1) on th e

development of two procedural languages, LISPX an d

MOL-32, without the goto . Further, that he had

been writing programs since 1960 in outline for m

using the principle of nested flow . These outlines ,
which served the purpose of flow charts, showed th e

flow of control graphically by indentation, an d

were used as original documentation of the program ,
which was coded in assembly language from the out -

line . This may be the first recorded instance o f
"goto-less " procedural programming (as distinc t
from functional programming in LISP), albeit not i n

a high level language .
Professor Van Wijngaarden (Vl) showed that th e

goto statement could, in principle, be eliminate d

from ALGOL 60 programs by a preprocessing algorithm

which replaced the set of given programming con-
structs by a smaller set of equivalent concepts .

The purpose of this demonstration was the expli-
cation of syntax and semantics, rather than 'goto-

less " programming .
Peter Landin also argued in 1966 (L3) for a

style of programming which eliminates not only th e

goto, but the notion of explicit sequencing an d

assignment as well . Landin introduced a languag e
called ISWIM, and used a purely functional subse t

of this language to program in this style . It

should be noted, however, that ISWI?I contains im-
perative features such as "program points " , roughly

analogous to labels, and assignment so that th e

programmer has an out . We shall see that thi s

theme constantly recurs in what follows .

COMPUTABILITY THEORY WITH[OUT] THE GOT O

Although the formal systems of computabilit y

theory (see below) have for the most part theo -
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retical rather than practical significance, they
demonstrate that the goto is not needed as a prim-
itive in order to compute all computable functions .
It is interesting to discover, however, that the
goto has been included in pragmatic extensions to
these systems .

The goto does not appear in the following for-
mal systems :

Formal System

	

programming Extension

combinatory logic of

	

a jumping operator ' J '
Curry & Feys (Cll), and

	

was defined by Landin
the lambda calculus of

	

(L3) in ISWIN, which i s
Church (C4)

	

an extension of the

lambda calculus

Post systems (P5) and

	

labelled Markov algor-
Narkov algorithms (Ml)

	

ithms with branchin g

were defined by Cara-
cciolo et al (Cl), an d

the language CO>IIT (Yl )
and SNOBOL (Fl) can be
considered to be exten-

sions of Markov algor-
ithms with goto command s

Kleene general recur-

	

LISP (212), which was also

sive functions (Kl)

	

strongly influenced b y
the lambda calculus, ha s
the PROG feature which
allows assignment and
goto (see below )

We see in each case that the goto is missing i n

the pristine form of the system, but has been adde d
in programming extensions (whether for the sake o f
tradition or "convenience" is a matter for debate) .

The FROG feature (B5) was added to LISP in order t o
incorporate the goto, among other things, although
a wide range of applications have been written in

pure (no assignment or goto) LISP .
The goto appears in Turing machines (Ti) (since

instructions or states have explicit successors) ,

and related automata such as Minsky's program ma -
chines (M6) . It also appears in program schemat a
(L7), which can be characterized as flow charts wit h

assignment statements in the boxes . And finally ,
it appears in the order codes of the general pur-

pose computer .

THE INFLUENCE OF NOTATIO N

It may be truly said that the goto statement i n
its form as a machine primitive has profoundly in-

fluenced the long line of procedural high level lan-
guage descendants . We wish to explore this poin t

and its relation to what shall be called the FORTRA N

II IF Syndrome .

The FORTRAN II IF statement --- IF (expr )
nl, n2, n3 ---- is a prime example of the power o f

language to influence program organization, an d
probably corrupted a generation of programmers .

This statement effectively generates multiple gotos

(which reflect the unconditional transfers in ma -

chine code), as can be seen by the equivalent PLR

statements :

IF expr < 0 THEN GO TO nl ;
IF expr = 0 THEN GO TO n2 ;

IF expr > 0 THEN GO TO n3 ;

The sad fact is that many programmers, eve n
after being liberated by compound and conditional

statements in ALGOL and PL/I so that they coul d
write

IF expr THEN DO ; . . ' END ;

continued to writ e

IF expr THEN GO TO LAB ;

from force of habit . Thus we see the influence
that machine primitives have exerted through th e
present evolution of high level programming lan-
guages !

SUMMARY OF ISSUE S

Since the theoretical possibility of elimi-
nating the goto has been demonstrated, it wil l
not be discussed further . We will therefore
attempt to summarize the practical arguments both
for and against the goto . The arguments for elimi-
nating the goto (at the same time, replacing it b y
other control structures) are essentially the fol-
lowing :

1 . Goto-less programs are easier to understand ,
debug and modify . This is the structured o r
top-down programming argument (D2) (D4) (D6 )
(ES) (W7) (W8) (W9) .

2, If the goto statement is not replaced b y
more sophisticated control structures, the

programmer is likely to misuse it (the goto. )
in order to synthesize those structures (D4 )

(W9) .

3 . It is easier to prove assertions about "goto-
less" programs (L3) (P3) (S3) .

The technical means of replacing gotos b y

other control structures are as follows :

1. by recursive procedures . This is a theo-
retical, rather than a practical, device (V1 )
(K2) .

2. by the while construction . This can al -

ways be done without changing the progra m
topology, by the introduction of auxiliary
variables (Al) .

3. by node splitting . This requires redundan t

code or procedure calls (K2) (W7) .

The arguments against eliminating the goto ca n
be surmarized as follows :

1. the goto is needed for abnormal exits fro m

a block or procedure . The 'repeat-exit' mech-
anism of Knuth and Floyd (K2) only allows a one -
level exit, whereas Wulf ' s leave construction

0?7) requires the reintroduction of labels for
multi-level exits . As Landin (L3) has admitted ,
" the most recalcitrant uses of explicit sequenc-

ing appear to be associated with success/failure
situations and the action needed on failure ,

2. the goto is often more efficient . For, con-
sider the overhead introduced by node splitting

and the while construction (setting of flags) .
Also, Knuth and Floyd (K2) have pointed out tha t
procedure calls can sometimes be replaced b y

goto statements .

3. the goto is useful for synthesis purposes (W2 )
(H2) . Two examples : the RETURN statement can b e
synthesized by goto, and the case statement o f

Wirth and Hoare (W3) can be synthesized in a
language, say PL/I, which lacks it .
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