Programming With{out} the GOTO

B.M. Leavenworth, |BM

A brief history of the goto controversy (retention
or deletion of the goto statement) is presented.
After considering some of the theoretical and
practical aspects of the problem, a summary of
arguments both for and against the goto is given.

KEY WORDS AND PHRASES: goto statement, comput-
ability theory, goto-less programming, combinatory
logic, lambda calculus, Post systems, Markov algo-
rithms, Turing machines, structured programming,
control structures.

CR CATEGORIES: 1.3, 4.2, 5.2

INTRODUCTION

There are a number of issues connected with
the retention or deletion of the goto statement
in programs or programming languages, and we
attempt to set the stage for a discussion of thecse
issues by giving a brief history of the goto con-
troversy. The possibility of eliminating the goto
has both theoretical and practical aspects. It is
of interest to discover that the goto does mnot
appear in most formal systems of computability
theory, but does appear in programming language
extensions of these systems. Since programming
style is an important component of the controversy,
we give one example of the influence of a high
level language on programming style, and its re-
lation to the goto statement. Finally, a summary
of arguments both for and against the goto is
given,.

HISTORY

The proposition that there might be something
wrong with the goto statement, one of the pillars
of practical programming since the invention of
FORTRAN, has slowly penetrated the consciousness
of programmers since Dijkstra's famous letter in
the Communications of the ACM (D4). Actually,
Professor Dijkstra considered programming languages
without benefit of either assignment or goto in a
paper presented at the 1965 IFIP Congress (D2). He
concluded that a language without the former was
elegant but inadequate. As to the latter, he enun-
ciated the criterion that the quality of a program-
mer was inversely proportional to the density of
goto statements in his program. While admitting
the possibility of a conflict between convenience
and efficiency, he made the following points, which
are paraphrased below.

54

1. Since transfer of control is subsumed byv
more powerful notions, to wit:

sequential execution

procedure call and return

conditional expression (statement)

repetition clause (for statement

in ALGOL, DO group in PL/I)

is not the programmer led astrav by giving
him control over it?

2. The solution of the halting problem (the
determination of whether a given program ter-
minates) is made difficult by the unrestricted
use of the goto statement. After elimination
of the goto, there are only two ways in which
a program may fail to stop: either by infinite
recursion, or by the repetition clause.

Val Schorre reported in 1966 (S1) on the
development of two procedural languages, LISPX and
MOL-32, without the goto. Further, that he had
been writing programs since 1960 in outline form
using the principle of nested flow. These outlines,
which served the purpose of flow charts, showed the
flow of control graphically bv indentation, and
were used as original documentation of the program,
which was coded in assembly language from the out-
line. This mav be the first recorded instance of
"soto-less' procedural programming (as distinct
from functional programming in LISP), albeit not in
a high level language.

Professor Van Wijngaarden (V1) showed that the
goto statement could, in principle, be eliminated
from ALGOL 60 programs by a preprocessing algorithm
which replaced the set of given programming con-
structs by a smaller set of equivalent concepts.
The purpose of this demonstration was the expli-
cation of syntax and semantics, rather than “goto-
less' programming.

Peter Landin also argued in 1966 (L3) for a
style of programming which eliminates not only the
goto, but the notion of explicit sequencing and
assignment as well, Landin introduced a language
called ISWIM, and used a purely functional subset
of this language to program in this style. It
should be noted, however, that ISWIM contains im-
perative features such as 'program points', roughly
analogous to labels, and assignment so that the
programmer has an out. We shall see that this
theme constantly recurs in what follows.

COMPUTABILITY THEORY WITH[OUT] THE GOTO

Although the formal systems of computability
theory (see below) have for the most part theo-

retical rather than practical significance, they
demonstrate that the goto is not needed as a prim-
itive in order to compute all computable functions.
It is interesting to discover, however, that the
goto has been included in pragmatic extensions to
these systems.
The goto
mal systems:

does not appear in the following for-

Programming Extension

a jumping operator 'J'
was defined by Landin
(L3) in ISWIM, which is
an extension of the
lambda calculus

Formal System
combinatory logic of
Curry & Feys (Cll), and
the lambda calculus of
Church (C4)

Post systems (P5) and
Markov algorithms (M1)

labelled Markov algor-
ithms with branching
vere defined by Cara-
cciolo et al (Cl), and
the language COMIT (Y1)
and SNOBOL (Fl) can be
considered to be exten-
sions of Markov algor-
ithms with goto commands

LISP (M2), which was also
strongly influenced by
the lambda calculus, has
the PROG feature which
allows assignment and
goto (see below)

Kleene general recur-
sive functions (K1)

We see in each case that the goto is missing in
the pristine form of the system, but has been added
in programming extensions (whether for the sake of
tradition or 'convenience' is a matter for debate).
The PROG feature (B5) was added to LISP in order to
incorporate the goto, among other things, although
a wide range of applications have been written in
pure (no assignment or goto) LISP.

The goto appears in Turing machines (T1l) (since
instructions or states have explicit successors),
and related automata such as Minsky's program ma-
chines (M6). It also appears in program schemata
(L7), which can be characterized as flow charts with
assignment statements in the boxes. And finally,
it appears in the order codes of the general pur-
pose computer,

THE INFLUENCE OF XOTATION

It may be truly said that the goto statement in
its form as a machine primitive has profoundly in-
fluenced the long line of procedural high level lan-
guage descendants. We wish to explore this point
and its relation to what shall be called the FORTRAN
II IF Syndrome.

The FORTRAN II [F statement —--- IF (expr)
nl, n2, n3 --- is a prime example of the power of
language to influence program organization, and
probably corrupted a generation of programmers.

This statement effectively generates multiple gotos
(which reflect the unconditional transfers in ma-
chine code), as can be seen by the equivalent PL/T
statements:

0 THEN GO TO nl;

0 THEN GO TO n2;

0 THEN GO TO n3;

IF expr <
IF expr =
IF expr >

The sad fact is that many programmers, even
after being liberated by compound and conditional

55

statements in ALGOL and PL/I so that they could
write

IF expr THEN DO; END;
continued to write

IF expr THEN GO TO LAB;

from force of habit. Thus we see the influence

that machine primitives have exerted through the
present evolution of high level programming lan-
guages !

SUMMARY OF TISSUES

Since the theoretical possibility of elimi-
nating the goto has been demonstrated, it will
not be discussed further. We will therefore
attempt tc summarize the practical arguments both
for and against the goto. The arguments for elimi-
nating the goto (at the same time, replacing it by
other control structures) are essentially the fol-
lowing:

1. Goto-less programs are easier to understand,
debug and modify. This is the structured or
top~-down programming argument (D2) (D4) (D6)
(M5) (W7) (W8) (W9).

2. If the goto statement is not replaced by
more sophisticated control structures, the
programmer is likely to misuse it (the goto)
in order to synthesize those structures (Dé4)
W9).

3. It is easier to prove assertions about '‘goto-
less' programs (L3) (P3) (S3).

The technical means of replacing gotos by
other control structures are as follows:

1. by recursive procedures., This is a theo-
retical, rather than a practical, device (V1)
(K2).

2. by the while construction. This can al-
ways be done without changing the program
topology. by the introduction of auxiliary
variables (Al).

3. by node splitting. This requires redundant
code or procedure calls (K2) (W7).

The arguments against eliminating the goto can
be summarized as follows:

1. the goto is needed for abnormal exits from

a block or procedure. The "repeat-exit’ mech-
anism of Knuth and Floyd (K2) only allows a one-
level exit, whereas Wulf's leave construction
(W7) requires the reintroduction of labels for
multi-level exits. As Landin (L3) has admitted,
"“the most recalcitrant uses of explicit sequenc-
ing appear to be associated with success/failure
situations and the action needed on failure.’

2. the goto is often more efficient. TFor, con-
sider the overhead introduced by node splitting
and the while construction (setting of flags).
Also, Knuth and Floyd (X2) have pointed out that
procedure calls can sometimes be replaced by
goto statements.

3. the goto is useful for synthesis purposes (W2)
(H2). Two examples: the RETURN statement can be
synthesized by goto, and the case statement of
Wirth and Hoare (W3) can be synthesized in a
language, say PL/I, which lacks it.

ACKNOWLEDGEMENT
Thanks are due to Jean Sammet who suggested the
writing of this paper, and who provided valuable

comments for improving several early versions.

REFERENCES & BIBLIOGRAPHY

Al, Ashcroft, Edward and Manna, Zohar. 'The
translation of 'goto' programs to 'while' pro-
grams''. Proc. IFIP Congress 71, Ljubljana, Aug.
1971.

Bl. de Bakker, J. W. "Semantics of programming
languages'. Advances in Information Systems
Science 2 (Ed. Tou, J.T.) Plenum Press, New York,
1969.

B2, Barron, D.W. Recursive Techniques in Pro-
gramming. American Elsevier, New York, 1968.

B3. Barron, D.W. and Strachey, C. '"Programming'.
Advances in Programming and Non-Numerical Com-
putation. (Ed. Fox, L.), Pergamon Press, New
York, 1966.

1

B4, Berry, D, M. '"Introduction to Oregano',
Proc. Symposium on Data Structures in Program-
ming Languages, SIGPLAN Notices 6,2 (Feb. 1971).

B5. Black, Fischer., '"Styles of programming in
LISP" The Programming Language LISP: Its Oper-
ation and Applications (Ed. Berkeley and Bobrow),
Information International, Cambridge, Mass. 1964.

B6. Bohm, Corrado and Jacopini, Giuseppe. '"Flow
diagrams, Turing machines and languages with only
two formation rules". CACM 9 (May 1966).

B7. Burge, W.H. "The evaluation, classification
and interpretation of expressions'. Proc. ACM
19th National Conf. 1964,

B8. Burge, W.H. '"Notes on a model for programming
systems: Part I'". Report RC 2188 (Aug. 1968). IBM
Research Division, Yorktown Heights, N.Y.

B9, Burstall, R.M. "Writing search algorithms in
functional form' Machine Intelligence 3 (Ed.

Michie, D,) Edinburgh Univ. Press, Edinburgh, 1968.

B10. Burstall, R.M. 'Proving properties of programs

by structural induction'’, Computer Journal 12,1
(Feb. 1969).

B1l. Burstall, R.M. and Popplestone, R.J. "POP-2
reference manual' Machine Intelligence 2 (Ed. Dale
& Michie), American Elsevier, New York 1968.

B12. Burstall, R.M. and Landin, P, J. "Programs
and their proofs: an algebraic approach', Machine
Intelligence 4 (Eds, Meltzer & Michie) Edinburgh
Univ. Press, Edinburgh, 1969.

Cl. Caracciolo di Forino, A., Spanedda, L. and
Wolkenstein, N, '"PANON-1B: A programming language
for symbol manipulation', Calcolo, Vol. 3, 1966.

¢2. Caracciolo di Forino, A. '"Generalized Markov
algorithms and automata', Automata Theory (Ed.

Caianiello, E. R.), Academic Press, New York, 1966,

C3. Christenson, Carlos, "Examples of symbol
manipulation in the AMBIT programming language'.
Proc, ACM 20th National Conf., Cleveland, Ohio,
Aug. 1965,

Ch. Church, A.,
version', Annals of Math.

"The calculi of lambda-con~
Studies No. 6, Prince-

56

ton Univ. Press, Princeton, New Jersey (1951).

C5. Cohen, K. and Wegstein, J. H., "AXLE, an
axiomatic language for string transformations',
CACM 8, (1965), 657-661,

C6. Cooper, D. C. "On the equivalence of cer-—
tain computations'. Computer Journal 9 (1966),
45-52.

C7. Cooper, D. C. "Reduction of programs to a

standard form by graph transformation", Theory
of Graphs, International Symposium, Rome 1966

(Ed. Rosenstiehl, P.), Gordon and Breach, New

York, 1967.

C8. Cooper, D. C. "Bohm and Jacopini's reduc-
tion of flow charts'. Letter to the Editor,
CACM 10 (Aug. 1967).

C9, Cooper, D. C. "Some transformations and
standard forms of graphs, with applications to
computer programs', Machine Intelligence 2 (Ed.
Dale & Michie), American Elsevier, New York,
1968.

Cl0. Coulouris, G. F, "Principles for imple-
menting useful subsets of advanced programming
languages', Machine Intelligence 1 (Ed. Collins
& Michie), Oliver & Boyd, Edinburgh, 1967.

Cll. Curry, H.
Vol. 1, North-Holland, Amsterdam,

and Feys, R, Combinatory Logic,
1958.

DL. Dijkstra, E. W., “An attempt to modify the
constituent concepts of serial program execution',
Proc. ICC Symposium on Symbolic Languages in Data
Processing, Gordon & Breach, New York, 1962,

D2, Dijkstra, E. W. "Programming considered as a
human activity", Proceedings IFIP Congress 65,65,
edited by W. A. Kalenich, Spartan Books, Washing-
ton, D. C., 1965.

D3, Dijkstra, E. W. "Recursive programming®,
Programming Systems and Languages (Ed. Rosen, S.),
McGraw-Hill, New York 1967,

D4. Dijkstra, E. W. "Go to statement considered
harmful", Letter to the Editor, CACM 11 (March
1968).

D5. Dijkstra, E. W. "A constructive approach to
the problem of program correctness', BIT 8 (1968).

D6, Dijkstra, E, W. '"Notes on structured pro-
gramming', EWD 249, Technical University, Eind-
hoven, Netherlands, 1969.

El, Ershov, A. P. "Theory of program schemata',
Proc. IFIP Congress 71, Ljubljana, Aug. 1971.

Fl. Farber, D. J., Griswold, R. E. and Polonsky,
1.P., "SNOBOL, a string manipulation language',
JACM 11 (January 1964).

F2. Fisher, David A. '"Control structures for pro-
gramming languages'', PhD. Thesis, Carnegie-Mellon
Univ., Pittsburgh, Pa., May 1970.

F3. Floyd, R. W. "A descriptive language for
symbol manipulation'', JACM 8,4 (1961).

F4, Floyd, R. W. '"Nondeterministic algorithms',
JACM 14 (Oct. 1967).

F5. Floyd, R. W.
Proc. Symp. Applied Math.,

"Assigning meanings to programs'',
AMS Vol., 19, 1967

"The iteration

Gl. Galler, B. A. and Fischer, M.J.

element', CACM 8 (June 1965).

G2. Galler, B. A. and Perlis, A. J. A View of
Programming Languages, Addison-Wesley, Reading,
Mass., 1970.

G3. Gilmore, P.C. "An abstract computer with
LISP-like machine language without a label
operator'", Computer Programming and Formal Sys-
tems (Eds. Braffort & Hirschberg), North-Holland,
Amsterdam, 1963,

G4. Goodstein, R. L. Recursive Analysis, Nortn-

Holland, Amsterdam, 1961.

G5. Griswold, R. E. Poage, J. F. and Polonskyv,
I. P. The SNOBOL4 Programming Language, Prentice~
Hall, Englewood Cliffs, N.J. 1968.

G6. Guzman, Adolfo and McIntosh, H.
CACM 9 (Aug. 1966).

"CONVERT',

Hl. Hopkins, Martin, '"A case for the goto',
Proceedings ACM '72, Boston, August 1972.

I1. TIanov, Y. I. "On the equivalence and
transformation of program schemes', CACM 1
(1958), 8-12.

12. Ianov, I. '"The logical schemes of algor-
ithms', Problems of Cybernetics I (English trans-
lation) Pergamon Press, Oxford 1960, 82-140.

J1. Johansen, Peter, '"Non-deterministic prog-
ramming'', BIT 7 (1967), 289-304.

J2. Johnston, John B. "The contour model of
block structured processes'', Proc. Symposium on
Data Structures in Programming Languages, SIGPLAXN
Notices 6,2 (Feb. 1971).

K1. Kleene, S. C. Introduction to Metamathe-
matics, Van Nostrand, New York, 1952.

K2, Knuth, D. E. and Floyd, R. W. '"Notes on
avoiding 'gote' statements', Information Pro-
cessing Letters 1, North-Holland, Amsterdam
(1971), 23-31.

L1. Landin, P. J. '"The mechanical evaluation
of expressions', Computer Journal 6,4 (1964),

L2. Landin, P. J. "A correspondence between
ALGOL 60 and Church's lambda-notation', CACM
8,2 and 3 (1965).

L3. Landin, P. J, "The next 700 programming
languages', CACM 9 (March 1966).

L4. Leavenworth, B. M. "The definition of con-
trol structures in MCG360'". Report RC2376

(Feb. 1969). IBM Research Division, Yorktown
Heights, N.Y.

.5, Ledgard, H. F. "Ten mini-languages: A study
of topical issues in programming languages'', ACM
Computing Surveys, 3,3 (Sept. 1971).

L6. Lucas, P. et al '"Method and notation for the

formal definition of programming languages', Tech.

Report TR 25.087, IBM Laboratory, Vienna, 1968.

L7. Luckham, D. C., Park, D.M.R. and Paterson,
M.S., '"On formalized computer programs', Journal
of Computer and System Sciences, June 1970,

ML. Markov, A.A. "The theory of algorithms'
(Russian Translation), U.S. Dept. of Commerce,

57

Office of Technical Services No. OTS 60-51085.

M2, McCarthy, J. et al, LISP 1.5 Programmers
Manual, The M.I.T. Press, Cambridge, Mass. 1962,

M3. McCarthy, J. "Towards a mathematical science
of computation', Proc. IFIP Congress, Munich 1962,
North-Holland, Amsterdam,

M4. McCarthy, J. "Basis for a mathematical theory
of computation', Computer Programming and Formal
Systems (Eds. Braffort & Hirschberg), North-Holland,
Amsterdam, 1963.

M5, Mills H. "Top down programming in large sys-
tems", Debugging Techniques in Large Systems (Ed.

Rustin, Randall), Prentice-Hall, Englewood Cliffs,
N.J. 1971,

M6, Minsky, M. L. Computation: Finite and Infinite
Machines, Prentice-Hall, Englewood Cliffs, N.J.
1967.

M7. Mooers, C. N. and Deutsch, L.P. "TRAC: A text
handling language'', Proc. ACM 20th National Conf.

Cleveland, Ohio (Aug. 1965).

N1. Naur. P. "Proof of algorithms by general snap-
shots'', BIT 6, 1966,

NZ2. Naur, P.
BIT 9, 1969.

"Programming by action clusters',

Pl. Paterson, M. S. '"Program schemata', Machine
Intelligence 3 (Ed. Michie. D.), Edinburgh Univ,
Press, Edinburgh, 1968.

P2. Paterson, M.S. and Hewitt, C. E. "Comparative
schematology', Proj. MAC Conference on Concurrent
Systems and Parallel Computation (Jume 1970), ACM,

~ew York, 1970.

P3. Perlis, A,J., Lecture Notes on Seminar on Ex-
tensible Languages. Carnegie-Mellon Universitv,
Fall, 1968.

P4. Peter, Rozsa. Recursive Functions, Academic
Press, New York, 1967.

P5. Post, E. 1. "Finite combinatory processes -
formulation IV, Journal of Symbolic Logic, Vol. 1,
(1936).

Rl. Revnolds, J.C. "GEDANKEN: A simple typeless
language based on the principle of completeness and
the reference concept', CACM 13 (May 1970).

R2Z. Rice, H. G. "Recursion and iteration', CACM
8 (Feb. 1965).

R3. Rice, J.R. "The goto statement reconsidered",
Letter to the Editor, CACM 11 (1968) 538.

R4. Rutledge, J.D. "On Ianov's program schemata',
JACM 11 (1964), 1-9.

Sl. Schorre, D.V. "Improved organization for pro-
cedural languages', Technical Memo, August 1966,
System Development Corp., Santa Monica, Calif,

S2. Shepherdson, J.C. and Sturgis, H.E. "Comput-
abilitv of recursive functions'', JACM 10,2 (1963)

$3. Stark, R. "A language for algorithms", Com-
puter Journal, Vol. 14, No. 1 (Feb. 1971).

S4. Strachey, C,
Computer Journal Vol. 8,

"A general purpose macrogenerator' ,
(Oct, 1965).

$5. Strachey, C. 'Fundamental concepts in program-

ming languages', NATO Conf., Copenhagen 1967.

§6. Strong, H. R., Jr. "Translating recursion
equations into flow charts'', Journal of Computer and
System Sciences, 5,3 (June 1971).

Tl. Turing, A.M. "On computable numbers with an
application to the Entscheidungsproblem", Proc,.
London Math. Soc., ser. 2, Vol. 42 (1936-1937).

V1. Van Wijngaarden, A. 'Recursive definition of
syntax and semantics', Formal Language Descript-
ion Languages for Computer Programming, edited by
T.B. Steel, Jr., North~Holland, Amsterdam, 1966.

Wl. Wang, H. "A variant to Turing's theory of
computing machines, JACM 4,1 (1957).

W2. Wegbreit, B. "Studies in extensible programming
languages'', ESD-TR-70-297, Directorate of Systems
Design & Development, L. G. Hanscom Field, Bedford,
Mass., May 1970,

W3. Wirth, Niklaus and Hoare, C.A.R. "A contribution
to the development of ALGOL'", CACM 9 (June 1966).

W4, Wirth, N. '"On certain basic concepts of pro-
gramming languages'', Computer Science Technical
Report No. CS65, Stanford University, 1967.

W5. Wirth, N. "Program development by stepwise
refinement', CACM 14 (April 1971).

W6. Wozencraft, J. M. and Evans, A. Jr., 'Notes
on programming linguistics', Dept. of Electrical
Engineering, MIT, Cambridge, Mass., Feb. 1971.

W7. Wulf, W. A. "Programming without the goto',
Proc., IFIP Congress 71, Ljubljana, Aug. 1971,

W8, Wulf, W. A. Russell, D.,B. and Habermann, A.N.
"BLISS: a language for systems programming, CACM
14 (Dec. 1971).

W9. Wulf, W. A. "A case against the goto". Pro-
ceedings ACM '72, Boston, August 1972.

Yl. Yngve, V. H. Computer Programming with COMIT
II, The M.I.T. Press, Cambridge, Mass, 1972,

58

