
Programming With(out) the GOTO

B .M . Leavenworth, IB M

A brief history of the goto controversy (retentio n

or deletion of the goto statement) is presented .
After considering some of the theoretical an d

practical aspects of the problem, a summary o f
arguments both for and against the goto is given .

KEY WORDS AND PHRASES : goto statement, comput-
ability theory, goto-less programming, combinatory
logic, lambda calculus, Post systems, Markov algo-

rithms, Turing machines, structured programming ,

control structures .

CR CATEGORIES : 1 .3, 4 .2, 5 . 2

INTRODUCTION

There are a number of issues connected wit h
the retention or deletion of the goto statement

in programs or programming languages, and w e
attempt to set the stage for a discussion of thes e

issues by giving a brief history of the goto con-
troversy . The possibility of eliminating the goto

has both theoretical and practical aspects . It is

of interest to discover that the goto does no t
appear in most formal systems of computability
theory, but does appear in programming languag e

extensions of these systems . Since programmin g
style is an important component of the controversy ,
we give one example of the influence of a hig h

level language on programming style, and its re-
lation to the goto statement . Finally, a summar y

of arguments both for and against the goto i s

given .

HISTORY

The proposition that there might be somethin g

wrong with the goto statement, one of the pillar s

of practical programming since the invention o f
FORTRAN, has slowly penetrated the consciousnes s

of programmers since Dijkstra ' s famous letter i n
the Communications of the ACM (D4) . Actually ,
Professor Dijkstra considered programming language s

without benefit of either assignment or goto in a
paper presented at the 1965 IFIP Congress (D2) . He

concluded that a language without the former wa s

elegant but inadequate . As to the latter, he enun-
ciated the criterion that the quality of a program-

mer was inversely proportional to the density o f

2oto statements in his program . While admittin g
the possibility of a conflict between convenienc e

and efficiency, he made the following points, whic h

are paraphrased below,

1. Since transfer of control is subsumed b y

more powerful notions, to wit :
sequential executio n
procedure call and return
conditional expression (statement )

repetition clause (for statement
in ALGOL, DO group in PL/I )

is not the programmer led astray by givin g
him control over it ?

2. The solution of the halting problem (th e
determination of whether a given program ter-

minates) is made difficult by the unrestricte d
use of the goto statement . After eliminatio n

of the goto, there are only two ways in whic h

a program may fail to stop : either by infinit e
recursion, or by the repetition clause ,

Val Schorre reported in 1966 (S1) on th e

development of two procedural languages, LISPX an d

MOL-32, without the goto . Further, that he had

been writing programs since 1960 in outline for m

using the principle of nested flow . These outlines ,
which served the purpose of flow charts, showed th e

flow of control graphically by indentation, an d

were used as original documentation of the program ,
which was coded in assembly language from the out -

line . This may be the first recorded instance o f
"goto-less " procedural programming (as distinc t
from functional programming in LISP), albeit not i n

a high level language .
Professor Van Wijngaarden (Vl) showed that th e

goto statement could, in principle, be eliminate d

from ALGOL 60 programs by a preprocessing algorithm

which replaced the set of given programming con-
structs by a smaller set of equivalent concepts .

The purpose of this demonstration was the expli-
cation of syntax and semantics, rather than 'goto-

less " programming .
Peter Landin also argued in 1966 (L3) for a

style of programming which eliminates not only th e

goto, but the notion of explicit sequencing an d

assignment as well . Landin introduced a languag e
called ISWIM, and used a purely functional subse t

of this language to program in this style . It

should be noted, however, that ISWI?I contains im-
perative features such as "program points " , roughly

analogous to labels, and assignment so that th e

programmer has an out . We shall see that thi s

theme constantly recurs in what follows .

COMPUTABILITY THEORY WITH[OUT] THE GOT O

Although the formal systems of computabilit y

theory (see below) have for the most part theo -

54



retical rather than practical significance, they
demonstrate that the goto is not needed as a prim-
itive in order to compute all computable functions .
It is interesting to discover, however, that the
goto has been included in pragmatic extensions to
these systems .

The goto does not appear in the following for-
mal systems :

Formal System

	

programming Extension

combinatory logic of

	

a jumping operator ' J '
Curry & Feys (Cll), and

	

was defined by Landin
the lambda calculus of

	

(L3) in ISWIN, which i s
Church (C4)

	

an extension of the

lambda calculus

Post systems (P5) and

	

labelled Markov algor-
Narkov algorithms (Ml)

	

ithms with branchin g

were defined by Cara-
cciolo et al (Cl), an d

the language CO>IIT (Yl )
and SNOBOL (Fl) can be
considered to be exten-

sions of Markov algor-
ithms with goto command s

Kleene general recur-

	

LISP (212), which was also

sive functions (Kl)

	

strongly influenced b y
the lambda calculus, ha s
the PROG feature which
allows assignment and
goto (see below )

We see in each case that the goto is missing i n

the pristine form of the system, but has been adde d
in programming extensions (whether for the sake o f
tradition or "convenience" is a matter for debate) .

The FROG feature (B5) was added to LISP in order t o
incorporate the goto, among other things, although
a wide range of applications have been written in

pure (no assignment or goto) LISP .
The goto appears in Turing machines (Ti) (since

instructions or states have explicit successors) ,

and related automata such as Minsky's program ma -
chines (M6) . It also appears in program schemat a
(L7), which can be characterized as flow charts wit h

assignment statements in the boxes . And finally ,
it appears in the order codes of the general pur-

pose computer .

THE INFLUENCE OF NOTATIO N

It may be truly said that the goto statement i n
its form as a machine primitive has profoundly in-

fluenced the long line of procedural high level lan-
guage descendants . We wish to explore this poin t

and its relation to what shall be called the FORTRA N

II IF Syndrome .

The FORTRAN II IF statement --- IF (expr )
nl, n2, n3 ---- is a prime example of the power o f

language to influence program organization, an d
probably corrupted a generation of programmers .

This statement effectively generates multiple gotos

(which reflect the unconditional transfers in ma -

chine code), as can be seen by the equivalent PLR

statements :

IF expr < 0 THEN GO TO nl ;
IF expr = 0 THEN GO TO n2 ;

IF expr > 0 THEN GO TO n3 ;

The sad fact is that many programmers, eve n
after being liberated by compound and conditional

statements in ALGOL and PL/I so that they coul d
write

IF expr THEN DO ; . . ' END ;

continued to writ e

IF expr THEN GO TO LAB ;

from force of habit . Thus we see the influence
that machine primitives have exerted through th e
present evolution of high level programming lan-
guages !

SUMMARY OF ISSUE S

Since the theoretical possibility of elimi-
nating the goto has been demonstrated, it wil l
not be discussed further . We will therefore
attempt to summarize the practical arguments both
for and against the goto . The arguments for elimi-
nating the goto (at the same time, replacing it b y
other control structures) are essentially the fol-
lowing :

1 . Goto-less programs are easier to understand ,
debug and modify . This is the structured o r
top-down programming argument (D2) (D4) (D6 )
(ES) (W7) (W8) (W9) .

2, If the goto statement is not replaced b y
more sophisticated control structures, the

programmer is likely to misuse it (the goto. )
in order to synthesize those structures (D4 )

(W9) .

3 . It is easier to prove assertions about "goto-
less" programs (L3) (P3) (S3) .

The technical means of replacing gotos b y

other control structures are as follows :

1. by recursive procedures . This is a theo-
retical, rather than a practical, device (V1 )
(K2) .

2. by the while construction . This can al -

ways be done without changing the progra m
topology, by the introduction of auxiliary
variables (Al) .

3. by node splitting . This requires redundan t

code or procedure calls (K2) (W7) .

The arguments against eliminating the goto ca n
be surmarized as follows :

1. the goto is needed for abnormal exits fro m

a block or procedure . The 'repeat-exit' mech-
anism of Knuth and Floyd (K2) only allows a one -
level exit, whereas Wulf ' s leave construction

0?7) requires the reintroduction of labels for
multi-level exits . As Landin (L3) has admitted ,
" the most recalcitrant uses of explicit sequenc-

ing appear to be associated with success/failure
situations and the action needed on failure ,

2. the goto is often more efficient . For, con-
sider the overhead introduced by node splitting

and the while construction (setting of flags) .
Also, Knuth and Floyd (K2) have pointed out tha t
procedure calls can sometimes be replaced b y

goto statements .

3. the goto is useful for synthesis purposes (W2 )
(H2) . Two examples : the RETURN statement can b e
synthesized by goto, and the case statement o f

Wirth and Hoare (W3) can be synthesized in a
language, say PL/I, which lacks it .

55



ACKNOWLEDGEMEN T

Thanks are due to Jean Sammet who suggested th e

writing of this paper, and who provided valuabl e
comments for improving several early versions .

REFERENCES & BIBLIOGRAPHY

Al . Ashcroft, Edward and Manna, Zohar . "The
translation of ' goto ' programs to 'while' pro -

grams " . Proc .	 IFIP Congress 71, Ljubljana, Aug .
1971 .

B]. . de Bakker, J . W . " Semantics of programmin g

languages " . Advances in Information Systems

Science 2 (Ed . Tou, J .T .) Plenum Press, New York ,
1969 .

B2, Barron, D .W . Recursive Techniques in Pro-

gramming . American Elsevier, New York, 1968 .

B3. Barron, D .W . and Strachey, C . "Programming " .
Advances in Programming and Non-Numerical Com-

putation .

	

(Ed . Fox, L .), Pergamon Press, New
York, 1966 .

B4. Berry, D . M . " Introduction to Oregano " .

Proc . Symposium on Data Structures in Program-

ming Languages, SIGPLAN Notices 6,2 (Feb . 1971) .

B5. Black, Fischer . "Styles of programming i n

LISP " The Programming Language LISP : Its Oper-

ation and Applications (Ed . Berkeley and Bobrow) ,

Information International, Cambridge, Mass . 1964 .

B6. Bohm, Corrado and Jacopini, Giuseppe . "Flow

diagrams, Turing machines and languages with only
two formation rules " . CACM 9 (May 1966) .

B7. Burge, W .H . "The evaluation, classification

and interpretation of expressions " . Proc . ACM

19th National Conf . 1964 ,

B8. Burge, W .H . "Notes on a model for programmin g

systems : Part I" . Report RC 2188 (Aug . 1968) . IBM

Research Division, Yorktown Heights, N .Y .

B9. Burstall, R.M . "Writing search algorithms in

functional form " Machine Intelligence_ 3 (Ed .

Michie, D .) Edinburgh Univ . Press, Edinburgh, 1968 .

B10. Burstall, R.M . "Proving properties of programs

by structural induction " , Computer Journal 12, 1

(Feb . 1969) .

B11, Burstall, R.M . and Popplestone, R .J . "POP-2

reference manua l" Machine Intelligence 2 (Ed . Dal e

& Michie), American Elsevier, New York 1968 .

B12, Burstall, R.M . and Landin, P . J . "Programs
and their proofs : an algebraic approach " , Machine

Intelligence 4 (Eds . Meltzer & Michie) Edinburg h

Univ . Press, Edinburgh, 1969 .

Cl . Caracciolo di Forino, A ., Spanedda, L . and

Wolkenstein, N . "PANON-1B : A programming languag e

for symbol manipulation " , Calcolo, Vol . 3, 1966 .

C2. Caracciolo di Forino, A . " Generalized Markov

algorithms and automata", Automata Theory (Ed .

Caianiello, E . R .), Academic Press, New York, 1966 ,

C3. Christenson, Carlos, "Examples of symbo l
manipulation in the AMBIT programming languag e " .

Proc . ACM 20th National Conf ., Cleveland, Ohio ,
Aug . 1965 .

C4. Church, A ., " The calculi of lambda-con-

version " , Annals of Math . Studies No . 6, Prince -

ton Univ . Press, Princeton, New Jersey (1951) ,

C5. Cohen, K . and Wegstein, J . H., " AXLE, an
axiomatic language for string transformation s " ,

CACM 8, (1965), 657-661 .

C6. Cooper, D . C . "On the equivalence of cer-
tain computations" . Computer Journal 9 (1966) ,

45-52 .

C7. Cooper, D . C . "Reduction of programs to a
standard form by graph transformation " , Theory

of Graphs, International Symposium, Rome 1966
(Ed . Rosenstiehl, P .), Gordon and Breach, New

York, 1967 .

C8. Cooper, D . C . " Bohm and Jacopini ' s reduc-

tion of flow charts " . Letter to the Editor ,
CACM 10 (Aug . 1967) .

C9, Cooper, D . C . " Some transformations an d

standard forms of graphs, with applications t o
computer program s " , Machine Intelligence 2 (Ed .

Dale & Michie), American Elsevier, New York ,
1968 .

C10 . Coulouris, G . F . "Principles for imple-

menting useful subsets of advanced programmin g
languages " , Machine Intelligence 1 (Ed . Collins

& Michie), Oliver & Boyd, Edinburgh, 1967 .

Cll . Curry, H. and Feys, R . Combinatory Logic ,
Vol . 1, North-Holland, Amsterdam, 1958 .

D1. Dijkstra, E . W ., 'An attempt to modify th e
constituent concepts of serial program executio n ' ,

Proc .	 ICC Symposium on ymbolic Languages in Data
Processing, Gordon & Breach, New York, 1962 .

D2. Dijkstra, E . W . "Programming considered as a
human activit y " , Proceedings IFIP Congress 65,65 ,
edited by W . A . Kalenich, Spartan Books, Washing -

ton, D . C ., 1965 .

D3. Dijkstra, E . W . "Recursive programming " ,

Programming Systems and Languages (Ed . Rosen, S .) ,

McGraw-Hill, New York 1967 .

D4. Dijkstra, E . W . "Go to statement considere d
harmful " , Letter to the Editor, CACM 11 (March

1968) .

D5. Dijkstra, E . W . 'A constructive approach t o
the problem of program correctnes s " , BIT 8 (1968) .

D6. Dijkstra, E . W . "Notes on structured pro-

gramming", EWD 249, Technical University, Eind-
hoven, Netherlands, 1969 .

El . Ershov, A . P . " Theory of program schemat a

Proc . IFIP Congress71, Ljubljana, Aug . 1971 .

Fl . Farber, D. J ., Griswold, R . E . and Polonsky ,
"SNOBOL, a string manipulation language " ,

JACM 11 (January 1964) .

F2. Fisher, David A . "Control structures for pro-
gramming language s " , PhD . Thesis, Carnegie-Mellon

Univ ., Pittsburgh, Pa ., May 1970 .

F3. Floyd, R . W . "A descriptive language fo r
symbol manipulation '" , JACM 8,4 (1961) .

F4. Floyd, R . W . "Nondeterministic algorithms " ,
JACM 14 (Oct . 1967) .

F5. Floyd, R . W . "Assigning meanings to programs "

Proc . Symp . Applied Math ., AMS Vol . 19, 1967 .

G1 . Caller, B . A . and Fischer, M .J, "The iteration

56



element " , CACM 8 (June 1965) .

G2. Galler, B . A . and Perlis, A, J . A View of

Programming Languages, Addison-Wesley, Reading ,

Mass ., 1970 .

G3. Gilmore, P .C . "An abstract computer with
LISP-like machine language without a labe l

operator" , Computer Programming and Formal Sys-
tems (Eds . Braffort & Hirschberg), North-Holland ,

Amsterdam, 1963 .

G4. Goodstein, R . L . Recursive Analysis, North -
Holland, Amsterdam, 1961 . .

G5. Griswold, R . E . Poage, J . F . and Polonsky ,

I . P . The	 SNOBOL4 Programming Language, Prentice -

Hall, Englewood Cliffs, N .J . 1968 .

G6. Guzman, Adolfo and McIntosh, H . "CONVERT " ,
CACM 9 (Aug . 1966) .

Hl . Hopkins, Martin, "A case for the goto "

Proceedings ACM '72, Boston, August 1972 .

Il . Ianov, Y . I . " On the equivalence and

transformation of program schemes " , CACM 1

(1958), 8-12 .

I2 . Ianov, I . The logical schemes of algor-

ithms " , Problems of Cybernetics	 I (English trans -
lation) Pergamon Press, Oxford 1960, 82-140 .

J1. Johansen, Peter, "Non-deterministic prog-
ramming " , BIT 7 (1967), 289-304 .

J2. Johnston, John B . 'The contour model o f

block structured processes " , Proc . Symposiumo n
Data Structures in Programming Languages, SIGPLAN

Notices 6,2 (Feb . 1971) .

K1. Kleene, S . C . Introduction to Metamathe-

matics, Van Nostrand, New York, 1952 .

K2. Knuth, D . E . and Floyd, R . W . "Notes on
avoiding ' goto ' statements " , Information Pro-

cessing Letters 1, North-Holland, Amsterda m
(1971), 23-31 .

Ll . Landin, P . J, "The mechanical evaluatio n
of expressions", Computer Journal 6,4 (1964) .

L2. Landin, P . J . "A correspondence betwee n

ALGOL 60 and Churc h ' s lambda--notation", CACM

8,2 and 3 (1965) ,

L3. Landin, P . J, "The next 700 programmin g

languages", CACM 9 (March 1966) .

L4. Leavenworth, B . M . "The definition of con-
trol structures in MCG360 " . Report RC237 6

(Feb . 1969) . IBM Research Division, Yorktown

Heights, N .Y .

L5. Ledgard, H . F . "Ten mini-languages : A study

of topical issues in programming languages " , ACM

Computing Surveys, 3,3 (Sept . 1971) .

L6. Lucas, P . et al "Method and notation for th e

formal definition of programming languages " , Tech .
Report TR 25 .087, IBM Laboratory, Vienna, 1968 .

L7. Luckham, D . C ., Park, D .M .R. and Paterson ,

M.S ., "On formalized computer programs " , Journa l

of Computer and System Sciences, June 1970 .

Ml . Markov, A .A . "The theory of algorithms "
(Russian Translation), U .S . Dept . of Commerce,

Office of Technical Services No . OTS 60-51085 .

M2. McCarthy, J . at al, LISP 1 .5 Programmer s
Manual, The M .I .T . Press, Cambridge, Mass . 1962 .

M3. McCarthy, J . "Towards a mathematical science
of computation " , Proc .	 IFIP Congress, Munich 1962 ,
North--Holland, Amsterdam ,

114 . McCarthy, J . "Basis for a mathematical theor y
of computation " , Computer Programming and Formal
Systems (Eds . Braffort & Hirschberg), North-Holland ,
Amsterdam, 1963 .

M5. Mills H . "Top down programming in large sys-
tems " , Debugging Techni q ues in Large Systems (Ed .
Rustin, Randall), Prentice-Hall, Englewood Cliffs ,
N .J . 1971 .

M6. Minsky, M . L . Computation : Finite and Infinit e
Machines, Prentice-Hall, Englewood Cliffs, N .J .
1967 .

M7. Mooers, C . N . and Deutsch, L .P . "TRAC : A tex t

handling language " , Proc . ACM 20th National Conf .
Cleveland, Ohio (Aug . 1965) .

N1. Naur, P . "Proof of algorithms

	

general snap -
shots", BIT 6, 1966 .

N2. Naur, P . "Programming by action cluste r
BIT 9, 1969 .

P1. Paterson, M . S . " Program schemata " , Machine
Intelligence 3 (Ed . Michie . D .), Edinburgh Unty ,
Press, Edinburgh, 1968 .

P2. Paterson, M .S . and Hewitt, C . E . " Comparative

schematology " , Prol . MAC Conference on Concurren t
Systems and ParallelComnutation (June 1970), ACM ,
New York, 1970 .

P3. Perlis, A,J ., Lecture Notes on Seminar on Ex -
tensible Languages . Carnegie-Mellon University ,

Fall, 1968 .

P4. Peter, Rozsa . Recursive Functions, Academic

Press, New York, 1967 .

P5. Post, E . I . " Finite combinatory processes -
formulation I", Journal of	 Symbolic Logic, Vol_ . 1 ,
(1936) .

Rl . Reynolds, J .C . "GEDANKEN : A simple typeless

language based on the principle of completeness an d
the reference concept " , CACM 13 (May 1970) .

R2. Rice, H . G . "Recursion and iteration ' , CACM
8 (Feb . 1965) ,

R3. Rice, J .R . "The goto statement reconsidered " ,

Letter to the Editor, CACM 11 (1968) 538 .

R4. Rutledge, J .D . "On Ianov ' s program schemata ' ' ,
JACM 11 (1964), 1-9 .

S1. Schorre, D .V . " Improved organization for pro-
cedural languages " , Technical Memo, August 1966 ,
System Development Corp ., Santa Monica, Calif .

S2. Shepherdson, J .C . and Sturgis, H .E . "Comput-
ability of recursive functions " , JACM 10,2 (1963) ,

S3. Stark, R . "A language for algorithms " , Com-
puter Journal, Vol . 14, No . 1 (Feb . 1971) .

S4. Strachey_, C, "A general purpose macrogener.ator ' ,
Computer Journal Vol . 8, (Oct, 1965) .

S5. Strachey, C . ' Fundamental concepts in program-

57



ming languages " , NATO Conf ., Copenhagen 1967 .

S6 . Strong, H. R ., Jr . "Translating recursio n
equations into flow chart s " , journal of Computer an d

System Sciences, 5,3 (June 1971) .

T1 . Turing, A.M. "On computable numbers with an

application to the Entscheidungsproble m" , Proc .
London Math . Soc ., ser . 2, Vol . 42 (1936-1937) .

V1 . Van Wijngaarden, A . "Recursive definition o f

syntax and semantics " , Formal Language Descript-
ion Languages for Computer Programming, edited by
T•B . Steel, Jr ., North-Holland, Amsterdam, 1966 .

W1. Wang, H . "A variant to Turing ' s theory o f

computing machines, JACM 4,1 (1957) .

W2. Wegbreit, B . " Studies in extensible programmin g
languages", ESD-TR-70-297, Directorate of System s
Design & Development, L . G . Hanscom Field, Bedford ,
Mass ., May 1970 .

W3. Wirth, Niklaus and Hoare, C .A .R . "A contribution
to the development of ALGOL " , CACM 9 (June 1966) ,

W4. Wirth, N . "On certain basic concepts of pro-
gramming languages " , Computer Science Technica l
Report No . CS65, Stanford University, 1967 .

W5. Wirth, N . "Program development by stepwis e
refinement " , CACM 14 (April 1971) .

W6. Wozencraft, J . M . and Evans, A . Jr ., 'Notes

on programming linguistic s " , Dept . of Electrical
Engineering, MIT, Cambridge, Mass ., Feb . 1971 .

W7. Wulf, W . A . "Programming without the goto " ,
Proc, IFIP Congress 71, Ljubljana, Aug . 1971 .

W8. Wulf, W . A . Russell, D .B . and Habermann, A .N .

"BLISS : a language for systems programming, CACM
14 (Dec . 1971) .

W9. Wulf, W . A . "A case against the goto " . Pro-
ceedings ACM '72, Boston, August 1972 .

Y1 . Yngve, V . H . Computer Programming with COMI T
II, The M .I .T . Press, Cambridge, Mass . 1972 .

58


