IMPLEMENTATION OF BLOCK-
STRUCTURED LANGUAGES

6.1 ACTIVATION RECORDS AND CONTEXT

Block-Structured Languages Required the Development of
New Run-Time Techniques

We have seen in previous chapters that Algol and Pascal contain many features that prevent
the use of the run-time structures that are used with FORTRAN. For example, since Algol
and Pascal procedures can be recursive, there may be several instances of a procedure ac-
tive at one time; hence, there must be some provision for the dynamic creation of activation
records to hold the state of these instances. Therefore, the static “one activation record per
procedure” techniques that we learned in Chapter 2 will not work. Also, we have seen that
Pascal provides dynamic memory management by allocating space for the locals of a pro-
cedure on a stack. This storage is allocated on procedure entry and deallocated on procedure
exit. This means that variables cannot be statically bound to memory locations as is com-
mon in FORTRAN and assembly languages. In this chapter we study in depth the imple-
mentation techniques required for Pascal since they are applicable to almost all modern lan-
guages.

An Activation Record Represents the State of a Procedure

Since the FORTRAN notion of an activation record is not adequate for block-structured lan-
guages like Algol and Pascal, it is worthwhile to reanalyze activation records by consider-
ing their purposes. Activation records record the state of an activation of a procedure. To
know the state of a procedure activation, we need to know the following information:

1. The code, or algorithm, that makes up the body of the procedure
2. The place in that code where this activation of the procedure is now executing
3. The values of all of the variables visible to this activation

-

212

IMPLEMENTATION OF BLOCK-STRUCTURED LANGUAGES

Since item 1, the code, does not vary between instances of execution of the procedure, it
does not have to be part of the activation record; the other two items may vary between in-
stances and so must be part of the activation record. The result is that we divide the repre-
sentation of the state of a procedure into two parts:

1. A fixed program part
2. A variable activation record part

We will now analyze the parts of an activation record.

The Instruction Part Represents the Site of Control

To know the state of execution of a procedure, we must know both the current statement or
expression and the context in which it is to be executed. The first of these is represented by
the ip or instruction part (also, instruction pointer) of the activation record. Typically, this
is just a pointer to the next instruction of the procedure to be executed; this is analogous to
the IP of our interpreter and is usually contained in the IP register of the computer when the

instance is executing.

The Environment Part Represents the Context

It is a familiar fact that the meanings of natural language sentences depend on their contexts.
For example, the sentence “John shot a buck” means that John spent a dollar when inter-
preted in the context of John’s trip to the store. Conversely, it means that he shot a male
deer, when interpreted in the context of John’s hunting trip.

The same is the case in programming languages. The FORTRAN statement

X = A(I)

denotes a subscripting operation in a context in which A has been declared to be an array
and a function invocation in a context in which A has been declared to be a function. It is
thus crucial that the interpreter (whether human or computer) interpret programming lan-
guage constructs in the correct context.

What does this have to do with activation records? In Pascal, procedures are scope defin-
ing constructs; that is, the statements and expressions inside a procedure are interpreted in a
different context from those outside. Therefore, to know the state of a procedure activation,
it is not sufficient to know the statement it is currently executing; it is also necessary to know
the context in which this statement must execute.

The context is defined by the ep or environment part (also, environment pointer) of an
activation record. The result is that an activation record has these two parts:

1. The ep (environment part), which defines the context to be used for this activation of the

procedure
2. The ip (instruction part), which designates the current instruction being (or to be) exe-

cuted in this activation of the procedure

6.1 ACTIVATION RECORDS AND CONTEXT 213

Activation Records Contain the Locals

The context of the statements contained in a procedure is simple: It is just the names de-
clared in that procedure together with the names declared in the surrounding procedures. We
must add the condition that if any name is declared in more than one of these procedures,
then it is the innermost binding that is seen; This is the rule of the contour diagrams. We
state this in a more procedural way: If we wish to look up a name, then we look to see if it
is in the local environment. If it is, we take this binding; otherwise we look in the surrounding
environment. This process continues, looking in outer and more outer surrounding environ-
ments until a binding for the name is found; if no binding is found, then the name is unde-
glared and the program is in error.

To implement recursive procedures and the dynamic storage allocation features of Al-
gol and Pascal, we have seen (Section 3.3) that an activation record is used to hold the lo-
cal variables and formal parameters of each procedure. These activation records are created
and deleted when the corresponding procedures are entered and exited, thereby allocating
and deallocating storage for the local variables. This provides immediate access to part of
the context—the local variables—since they are stored directly in the activation record. The
environment part of the activation record must also make some provision for gaining access
to the nonlocal parts of the context. Thus, there are two components to the environment part:

1. The local context
2. The nonlocal context

Our analysis has yielded the following representation for procedure activations:

I. Fixed program part
II. Variable activation-record part
A. instruction part
B. environment part
1. local context
2. nonlocal context

We now develop one means for providing the nonlocal access.

A Static Link Points to the Outer Activation

Every variable is local to some procedure. (The global variables are local to the “main pro-
cedure”; in effect, the main program is called by the operating system.) Hence, every vari-
able can be found in the activation record for some procedure. Therefore, to provide access
to the nonlocal variables of a procedure, it is necessary to provide access to the activation
records of the procedures to which these variables are local.

How can we provide access to the activation record for the surrounding procedure? The
simplest approach is to keep a pointer to it, as we can see by looking at a contour diagram.
Consider the program in Figure 6.1; the contour diagram shows the context when the pro-
cedures (a), (b), and (c) have all been entered. To look up a variable, such as N, we start in

IMPLEMENTATION OF BLOCK-STRUCTURED LANGUAGES

[program af(...);

var N: integer;

[procedure b (sum: real);
var i: integer;
avg: real;
Data: array [1 .. 10] of real;
[~ procedure c¢ (val: real);
begin
. (a)
[N
writeln (Datalil); (b)
sum
. i
L end {c}; avg
begin Data
. W (c)
. ‘ val
L end {b}; < e
begin
L end {a}.
Program Dynamic structure

t
Figure 6.1 The State of a Program

the current local context, indicated by EP (representing the active local context), and begin
looking outward through the surrounding contexts. Thus, we must provide a link from each
contour to the surrounding one. Together these links form a chain leading from the currently
active activation (containing EP) to the outermost (or global) activation. This link is called
the static link (and the chain, the static chain), because it reflects the static structure of the
program, that is, the way the procedures are nested. (Compare the dynamic chain discussed
in Section 2.3.)

Figure 6.2 shows a typical implementation of the activation records of procedures. The
state of execution is presumed to be inside of procedure (c). We can see that there is an acti-
vation record on the stack for each of procedures (a), (b), and (c) and that the static link points
from each record to the one below it on the stack. Each activation record contains both an SL
field, containing the static link, and space for the local variables (and other information not
shown). The EP (environment pointer) register points to the activation record for the currently
active context; we will call this the current activation record. The SP (stack pointer) register
always points to the top of the stack. We call the IP-EP register pair the locus of control, be-
cause these two registers together define the instruction and context controlling the computer.

The formats we use for activation records here (or anywhere else in this book) are not
sacred; the format chosen for a particular machine will often depend on the instruction set

6.1 ACTIVATION RECORDS AND CONTEXT 215

/\ Figure 6.2 Activation Records for Procedures
- SP
val]—act. record (c)
SL

— EP

Data

avg
act. record (b)

sum

SL
(N act. record (a)
/‘ SL .

and other characteristics of that machine. For example, we have chosen to make the static
links (including the EP register) point at the base of the activation records (specifically, at
their static link fields); this makes it easy to chain from one activation record to another when
accessing a variable (a process discussed below).

B Exercise 6-1: Draw the stack and Ep and SP registers when the assignment to val is
being executed in the program in Figure 6.14 (p. 237).

B Exercise 6-2: Draw the stack and Ep and SP registers just after the call Q(P) is exe-
cuted [i.e., before fp (5) is executed] in the program skeleton in Figure 6.5 (p. 226).

Variables Are Addressed by Two Coordinates

It is probably apparent that it would be very inefficient to carry out this search process lit-
erally; it would require variable names to be looked up at run-time every time a variable is
referenced. Thus, we must find some way to avoid this overhead. In Chapter 2 we saw that
a FORTRAN compiler assigns fixed memory locations to each variable and then uses the
addresses of these locations to access the variables at run-time. This binding of variables to
locations is done by the compiler and is recorded in its symbol table. The symbol table is
discarded at the end of the compilation process since all variable references have been re-
placed by absolute addresses. Here is an example of part of a FORTRAN symbol table.

Name Type Location
I INTEGER 0245
J INTEGER 0246
K INTEGER 0247

216 IMPENENTATK»JOFBLOCKSTRUCTUREDLANGUAGES

Static binding will not work for block-structured. languages since variables are allocated
memory locations at run-time and since there may be several instances of the same variable
in existence at the same time. To see how this can be implemented, look again at the con-
tour diagram in Figure 6.1. The variable val is local to the procedure (c), so it is contained
in the currently active activation record; we do not have to follow the chain to get to it. The
variable sum is contained in procedure (b), which immediately surrounds (c); we have to
follow the static chain a distance of one link to get to the activation record containing sum.
Finally, N is declared in the procedure (a), so we have to follow the static chain a distance
of two links to get to the activation record containing N. Therefore, if we know the “dis-
tance” from the use of a variable to its declaration, then we can traverse that many links of
the static chain to get to the environment of definition of the variable. Hence, we must in-
vestigate the determination of this distance.

It is clear that this distance depends on how deeply nested the use of the variable is
within the procedure in which the variable is declared. That is, if the procedure of use is two
levels deeper than the procedure of declaration, then the distance is two. Some terminology
will help to clarify these ideas. We will call the number of levels of procedure-end con-
taining a use or declaration of a name the static nesting level of that use or declaration. To
put it another way, the static nesting level of a use or declaration of a name is the number
of contour lines surrounding that use or declaration. For example, the static nesting level of
the declaration of N is one, of the declaration of sum is two, and of the declaration of val
is three. The static nesting level of the use of Data in procedure (c) is three.

The static distance between two constructs is the difference between their static nesting
levels. For example, since the static nesting level of the use of Data in procedure (c) is three
and the static nesting level of the declaration of Data is two, the static distance between
this use of Data and its declaration is one. We can see that the static distance between a
use of a variable and its declaration tells us how many static links must be traversed to get
to the activation record containing that variable.

It is quite easy for the compiler to keep track of this information: It must always know
the static nesting level of the procedure it is compiling so it increments this number when-
ever it encounters a procedure and decrements it whenever it encounters a procedure end.
Then, whenever the compiler processes a declaration, it must record in the symbol table en-
try for the declared variable the static nesting level (snl) of its declaration. For example, a
symbol table for the program in Figure 6.1 might look like this (ignore the ‘offset’ field for

now):

Name Type Snl Offset

N integer 1 1

sum real 2 1

i integer 2 2

avg real 2 3

Data real array 2 4

val real 3 1

For any statement containing a variable, the difference between the static nesting level of
that statement and the static nesting level given for that variable in the symbol table is the
distance to the activation record containing the variable.

6.1 ACTIVATION RECORDS AND CONTEXT 217

It is not sufficient to know the particular activation record in which a variable resides;
it is also necessary to know its position within that activation record. This is the purpose of
the offset field in the symbol table shown above; it gives the fixed offset, or distance, from
the base of the activation record to the variable. Therefore, we can see that we are using a
two-coordinate method of addressing variables: The first coordinate is the static nesting level
of the variable’s declaration, which allows us to get to the activation record in which the
variable resides. The second coordinate is the of fset, or position of the variable within
that activation record. Notice that although the position of the activation record may vary at
run-time, the position of the variable within that activation record is fixed. We will find that
many objects in block-structured languages are addressed by these two coordinates:

1. An environment pointer (the static nesting level, in this case), which allows us to get to
the activation record for the environment of definition of the object

2. A relative offset (the variable offset, in this case), which allows us to access the desired
object within its activation record

B Exercise 6-3: Compute the static nesting levels of all identifiers (i.e., variable and pro-
cedure names) in the programs in Figures 6.5 and 6.14. Compute the static nesting lev-
els of each use of a name and the static distances between the uses and declarations of
the names in these programs. Finally, compute the offsets of the variables in these pro-
grams.

Accessing a Variable Requires Two Steps

Since two coordinates are needed to locate a variable, it is natural that two steps are required
to access a variable: (1) The activation record for the environment of definition must be lo-
cated. (2) The variable must be located within this activation record. More specifically.

1. At run-time skip down the static chain the number of links given by the static distance to
get to the activation record in which the variable resides. The static distance between the
use and the declaration of the variable is a constant computed by the compiler.

2. The address of the variable is obtained by adding the fixed offset of the variable to the
address obtained in step 1. This offset is also a constant computed by the compiler.

To see how this might actually be implemented on a computer, we will suppose the formats
shown in Figure 6.2. Now, suppose that we wish to access a local variable, say val, from
within procedure (c). Since it is local, the static distance to its activation record is zero so
we don’t have to follow the static chain at all. Therefore, the address of val is just EP +
1, where 1 is the fixed offset recorded in the symbol table entry for val. The general case
can be symbolized:

fetch M[EP + offset(v)]

where v is any local variable and of fset (v) is the constant offset recorded for v in the
symbol table.
Next consider accessing sum, which is at a static distance of one. This means that one

218

IMPLEMENTATION OF BLOCK-STRUCTURED LANGUAGES

link of the static chain must be traversed to get the address of sum’s activation record. We
will hold this address in a temporary register AP (activation record pointer):

AP := MI[EP]; traverse static link
fetch M[AP + 1]; access the variable

since 1 is the offset of sum.
Finally, let’s consider the code to access N, which is at a static distance of two. In this
case, two links of the static chain must be traversed:

AP
AP

M[EP]; traverse first static link
M[AP]; traverse second static link

1]

fetch M[AP + 1]; access the variable

since 1 is the offset of N.

Let’s summarize the steps to access a variable. If the variable is at a static distance of
zero, then it can be accessed directly by M[EP + offset(v)]. Ifitis at a static dis-
tance greater than zero (sd > 0), then the steps required are

AP M[EP]; traverse first static link
(sd — 1) X AP := M[AP]; traverse remaining static links
fetch M[AP + offset(v)]; access the variable

where sd is the static distance. The meaning of the second line above is (sd - 1) dupli-
cates of the instruction AP := M[AP]. If sd = 1, this instruction is omitted and if sd = 0,
the first two instructions are omitted and EP is used instead of AP.

We pause to analyze the performance of this method of accessing variables. Notice that
each traversal of a static link requires one memory reference (ignoring any memory refer-
ences required to decode the instructions themselves), so sd memory references are required
to get to the activation record. An additional memory reference is required to read or write
the variable once it is located so the total memory references required to access a variable
by this method is sd + 1. (The exact count may vary from machine to machine.) Therefore,
it can be quite expensive to access variables at a long static distance, although access to lo-
cal variables is quite inexpensive. It has been observed that programs most frequently refer-
ence local variables and global variables (i.e., variables declared in the innermost and out-
ermost procedures), therefore, in a deeply nested program, the average time to access a
variable could become excessive. This is important because the time required to access the
variables often dominates the running time of a program. Later in this chapter, we will dis-
cuss another way of implementing variable accesses that is better in this regard.

6.2 PROCEDURE CALL AND RETURN

Activation Records Represent the State of an Activation

In Chapter 2 (Section 2.3), we discussed the implementation of FORTRAN subprograms and
we saw that the siate of each subprogram was represented in an activation record, which .
held all of the information necessary to characterize the state of the computation in progress.

6.2 PROCEDURE CALL AND RETURN 219

This included (1) the storage for the procedure’s parameters, local variables, and temporaries;
(2) the resumption address of the subprogram; and (3) a dynamic link, or pointer to the caller’s
activation record.

These activation records can be easily adapted to accommodate block-structured, recur-
sive languages. Combining the needs of environmental access under block structure and re-
cursive procedure call and return implies that a procedure activation record must have these
parts:

1. The ep (environment part), which defines the context to be used for this activation of the
procedure and comprises the following:
a The parameters and local variables, which are the innermost (local) scope
b. The static link, which provides access to the surrounding (nonlocal) scope

2. The ip (instruction part), which designates the current instruction being (or to be) executed
in this activation of the procedure (essentially the resumption address of Chapter 2)

3. The dynamic link, which points to the activation record of the caller of this activation of
this procedure (i.e., the activator of this activation) and allows us to restore the state of
the caller upon procedure exit

Procedures Require Both Static and Dynamic Links

We have described above two links for a procedure—the static link and the dynamic link.
Is it possible to combine these two links into one? Are they really the same thing? After all,
they both point to activation records lower down on the stack. In fact, two separate links are
required.

Recall that Algol and Pascal use static scoping; that is, a procedure executes in the en-
vironment of its definition rather than the environment of its caller (see Chapter 3, Section
3.3). The dynamic link field of a procedure’s activation record, as we have described it in
Chapter 2, points to the previous activation record on the stack, which is the activation record
of the caller. Therefore, if we follow the dynamic chain, we will not get to the correct en-
vironment for the procedure; we will get the environment of the caller rather than the envi-
ronment of definition.

Furthermore, the environment of definition is not at any fixed location down the dy-
namic chain. To see this, suppose that two procedures P and Q are defined in the same pro-
cedure B and that P calls itself recursively a number of times before it calls Q. When Q has
been called, the stack looks like this (the arrows represent the dynamic chain):

\YLV.V. VANV V}

220 IMPLEMENTATION OF BLOCK-STRUCTURED LANGUAGES

Notice that Q’s environment of definition is B. There is no way that the compiler can know
how many of P’s activation records are between Q’s and B’s since this number depends on
the dynamic behavior of P. In other words, there is no simple way that Q can get to its con-
text, B, via the dynamic chain.

One straightforward solution to this problem is to provide an explicit pointer from Q to
its environment of definition as illustrated below:

This pointer is the static link.

Procedure Activation Has Three Steps

In Chapter 2 (Section 2.3) we saw that four steps are required to invoke a FORTRAN sub-
program:

1. Transmit the parameters to the callee.

2. Save the caller’s state in the caller’s activation record.
3. Establish the dynamic link from the callee to the caller.
4. Enter the callee at its first instruction.

These can be rearranged into the following basic functions that must be accomplished
to activate a procedure:

1. The state of the caller must be saved (step 2 above).
2. An activation record for the callee must be created (steps 1 and 3 above).
3. The callee must be entered in the context of the new activation record (step 4 above).

That is, to deactivate the caller and activate the callee, it is necessary to (1) suspend the
caller into its activation record, (2) initialize the callee’s activation record, and (3) transfer
the locus of control from the caller to the callee.

Saving the Caller’s State

Let’s consider the first of these steps, saving the state of the caller. The state of the caller
has two major components—the instruction part (ip) and the environment part (ep). The ip

6.2 PROCEDURE CALL AND RETURN 221

is the address at which the caller must resume execution after the callee exits so we must
store this address in the IP part of the caller’s activation record,! that is,

M[EP].IP := resume; save resume location

The EP register always points to the activation record of the currently active procedure (i.e.,
the caller).

The second component of the caller’s state is the environment part, which is in turn
composed of the locals and the nonlocals. The access to the nonlocals is already saved
in the static link of the caller’s activation record so no further work is required on the
nonlocals’ account. The locals are contained in the caller’s activation record so they are
atso safe.

Have we accounted for all of the caller’s context? It would seem so since we have
ensured that both the locals and the nonlocals are saved. Unfortunately, we have taken
care of only the programmer visible environment; there are other variables, such as tem-
porary locations and the machine’s registers, that must really be considered part of the
local context. After all, their contents affect the meaning of the machine code instructions
in the procedure. We saw in the FORTRAN call sequence that a necessary step was sav-
ing these temporaries. Since the details are, of necessity, very machine dependent, we ig-
nore saving and restoring the temporary locations and machine registers in the rest of this
chapter.

Creating the Callee’s Activation Record

Tfie second or tfie steps 11 aclivarng a procequre IS (0 credre d properfy Iudanzed acava-
tion record for the callee and to install this activation record as the new active context. What
is required to accomplish this? We have seen that a procedure activation record has these

parts:

¢ PAR parameters

* SL static link

* IP resumption address
* DL dynamic link

Therefore, each of these parts must be properly initialized. Also, to install this activation
record as the new active context, a pointer to the activation record must be placed in the EP
register (which points to the beginning of the static chain, see Section 6.1).

Next, we will consider each of these steps in the order listed above, although they do
not necessarily have to be performed in that order. In fact, the best order for the operations
usually depends on the particular arrangement chosen for the activation record, which varies
from machine to machine. There are a few logical dependencies among the above steps that
we will note as they occur.

! Note that there are IP and EP registers, which are related to, but not the same as, the IP and EP fields in
the activation record.

222 IMPLEMENTATION OF BLOCK-STRUCTURED LANGUAGES

The Actuals Are Put in the Parameter Part

The parameter part of the activation record (PAR) contains the parameters to this activation:
the parameter’s value in the case of value parameters, its address in the case of reference pa-
rameters, and a pointer to a thunk (Chapter 3, Section 3.5) in the case of name parameters.
Therefore, each actual parameter must be evaluated to yield either a value or an address, as
appropriate, and this result must be stored in the appropriate place in PAR. Therefore, if
callee represents the address of the new activation record for the callee, then the parameter

transmission process can be written:

M[callee] . PAR[1] evaluation of parameter 1;
M[callee] .PAR[2] := evaluation of parameter 2;

evaluation of parameter n;

Mcallee] . PAR [n]

We will determine the value of callee later.
Whenever we see that something is to be evaluated, as in the above code sequence, we

must ask ourselves: “In what environment should this thing be evaluated”? Clearly, since the
actual parameters are written in the context of the caller, they should also be evaluated in
the context of the caller. This is the context that the programmer was assuming when the
call was written, and we do not want to violate these assumptions. Since the parameters must
be evaluated in the context of the caller, the parameter-part initialization must be done be-
fore the new activation record (callee) is installed as the new active context (i.e., before the
EP register is altered). This is one of those constraints on the ordering of the steps that we

mentioned above.

The Static Link Is Set to the Environment of Definition

The static link (SL) is the next part of a procedure activation record that must be initialized.
By definition, the static link points to the environment of definition of the procedure. How
do we get to this environment? We faced a similar problem in accessing a variable (Section
6.1) since it was necessary first to get to the environment of definition of the variable before
its contents could be accessed. This was done by following (at run-time) the static chain for
the number of links given by the static distance (computed at compile-time) between the use
of the variable and its definition. This same technique works for procedures. At compile-
time we must record in the symbol table entry for each procedure the static nesting level of
that procedure’s definition. Then, when a procedure call is being compiled, the compiler sub-
tracts the static nesting level of the definition from the static nesting level of the call; this
gives the static distance between the call and the definition and, hence, the distance down
the static chain to the environment of definition.

We summarize the operations to initialize the static link in the following instructions. If
the procedure is defined in the current context (i.e., the static distance from call to definition

is zero), then this code suffices:

M[callee] .SL. := EP; set the static link to this context

In this case the environment of definition is the environment of the caller.

6.2 PROCEDURE CALL AND RETURN 223 i

If the distance from the call to the definition is sd > 0, then it is first necessary to tra-
verse the static chain to get to the environment of definition:

AP := M[EP]; traverse first static 1link
(sd - 1) X AP := M[AP]; traverse remaining static links
Mlcallee] .S, : = AP; set the static link

because the Pascal scope rules apply to both variables and procedures so the same process
is required to get to the context in which either kind of name is defined.

-

The Final Steps Are Simple

Initializing the rest of the callee’s activation record is very simple. First, consider the in-
struction part (IP): There is no reason to initialize this field now since it will be used only
when (and if) the callee becomes caller by calling a procedure.

The dynamic link (DL) field is also simple to initialize; since it points to the activation
record of the caller, which is contained in the EP register, the following code suffices:

M[callee] .DL, := EP; set dynamic 1link

Clearly, this code must be executed before the EP register is altered to refer to the callee’s
activation record; this is another example of a constraint between the steps.

The next step is to install the callee’s activation record as the new active context. Since
the EP register always points to the activation record of the active context (the currently ac-
tive procedure), this is accomplished by

EP := callee; install new AR

The final steps are to allocate space for the activation record on the stack and to enter
the callee at its first instruction:

SP := 8Sp + size(callee’sAR); allocate callee’s AR
goto entry (callee) ; enter the callee

Both the size of the callee’s activation record and the address of the caller’s entry point are
constants known to the compiler.2

The last instruction in the above code sequence is in effect a store into the TP register.
That is, goto entry (callee) is equivalent to Tp := entry (callee). The transfer of
the locus of control is effected by the assignments to IP and EP [i.e.,, EP := callee and TP
1= entry (callee)).

The steps to call a Pascal procedure are summarized in Figure 6.3. We have improved
the code sequence slightly: Since the Ep register has already been saved, we can scan down
the static chain with sd repetitions of EP := M [EP]. Also, since SP points to the next

2 This is true for Pascal. Some languages, such as Algol, have dynamic arrays, which means that the size of
the activation records can vary at run-time. Compilers for these languages must produce code to compute
the activation record size.

IMPLEMENTATION OF BLOCK-STRUCTURED LANGUAGES

M[SP] .PAR[1] := eval par. 1;
. transmit parameters
M[SP] .PAR[n] := eval par. n;
M[EP] .IP := resume; save resume location
M[SP].DL := EP; set dynamic 1link
sd X EP := MI[EP]; scan down static chain
M[SP].SL := EP; set static 1link
EP := SP; install new AR
SP := SP + size/(callee’s AR) ; allocate callee’s AR
goto entry (callee) ; enter the callee
resume: resume location

Figure 6.3 Procedure Call Sequence with Static Chain

available stack location, it can be used as the base of the callee’s activation record, so callee =
SP.

We can estimate the number of memory references in a procedure call by looking at the
code sequence in Figure 6.3. There is one reference to. save the caller’s IP, sd references to
traverse the static chain, and two references to set the static and dynamic links. (We do not
count the time to store the n parameters.) Thus, a call costs sd + 3 memory references. No-
tice that the cost of a call (like the cost of a variable access) depends heavily on the static
distance to the procedure’s declaration. Thus, it will be relatively expensive to call global
procedures from inner procedures (a common situation). We investigate solutions to this later
(Section 6.3).

B Exercise 6-4: Draw the state of the stack and registers after each of the steps in Fig-
ure 6.3.

B Exercise 6-5: The instruction sequence of Figure 6.3 is duplicated for every procedure
call. If some of these instructions were made part of the code of the callee, they would
not have to be duplicated over and over. Rearrange the code of Figure 6.3 to minimize
the number of instructions that must be duplicated for each call.

Procedure Exit Reverses Procedure Entry

The code for returning from a procedure must reverse the effects of the call. That is, the lo-
cus of control must be transferred from the callee back to the caller. In other words, the callee
must be deactivated and the caller reactivated. A return is generally simpler than a call since
things are being thrown away rather than created. Two tasks must be accomplished:

1. Delete the callee’s activation record.
2. Restore the state of the caller.

In practice these two steps must be interleaved since the information required to restore the
caller’s state (namely, the dynamic link) is in the callee’s activation record.

6.2 PROCEDURE CALL AND RETURN 225

Deleting the callee’s activation record is accomplished by subtracting from the stack
pointer the size of the callee’s activation record:

SP := SP - size(callee’s AR) ; delete callee’s AR

Reinstalling the caller’s context as the active context is accomplished by loading the EP reg-
ister from the dynamic link of the callee:

EP := M[EP].DL; reactive caller’s AR

Since EP now points to the caller’s activation record, we can use it to resume execution of
the caller:

goto M[EP].IP; resume execution

The goto is in effect IP := M[EP] .IP, so these last two steps return the locus of control
(EP-IP pair) to the caller. Figure 6.4 summarizes the code for returning from a procedure.
This would be compiled either at the end of the procedure body of Pascal procedures, or for
each return-statement for languages that have return-statements. Since memory must be ref-
erenced for the dynamic link and the IP field, a return requires two memory references.

B Exercise 6-6: Draw the state of the stack and registers after each of the instructions in
Figure 6.4.

Procedural Parameters Are Represented by Closures

Recall that Algol and Pascal (and many other languages) allow procedures and functions to
be passed as parameters to other procedures. For an example of procedural parameters, see
the program in Figure 6.5. In this case, we have a procedure Q that takes another procedure
(corresponding to the formal parameter £p) as a parameter. We can see two calls on Q: one
in which it is passed the procedure P and another in which it is passed T. There are two
problems we must solve: (1) What exactly is it that is passed to Q to represent P or T?
(2) How is the indirect call £p (5) in the body of Q implemented?

We will consider the second question first since this will help us to answer the first ques-
tion. Let’s assume for a moment that a call on a formal procedure, such as fp (5), is imple-
mented like any other call, that is, with the code sequence in Figure 6.3. Does this work? The
first three steps (transmitting the parameters, saving the resume location, and setting the dy-
namic link) are all fine. The next step, scanning down the static chain for the environment of
definition, cannot be done, however, because we need to know the static distance from the
call to the environment of definition, which requires us to know the static nesting level of the
environment of definition. For a normal procedure call this is simple to determine during com-
pilation; it is recorded in the symbol table entry for the procedure. In a call on a formal pro-

SP := SP - size(callee’s AR) ; delete callee’s AR
EP := M[EP].DL; reactivate caller’s AR
goto M[EP].IP; resume execution

Figure 6.4 Procedure Return with Static Chain

e

226 IMPLEMENTATION OF BLOCK-STRUCTURED LANGUAGES

[program A;

[procedure P (x: integer);
begin

L end {P};

 procedure Q (procedure fp (n: integer));
begin

fp(5);
L end {Q};

[procedure R;

procedure T (x: integer);
begin

end {T};

begin
Q(P);
Q(T);

L end {R};

begin
R;
L. end.

Figure 6.5 Example of Procedural Parameters

cedure, such as fp (5), we need to know the static nesting level of the corresponding actual
procedure (P or T, in this example). Unfortunately, this can vary at run-time from one call of
0 to another. In fact, T’s environment of definition is not even in the active static chain when
it is called from Q by fp (5). Thus, we can see that part of the information that must be
passed to Q is the environment of definition of the corresponding actual procedure.

B Exercise 6-7: Explain why the activation record for T’s environment of definition is
not in the active static chain when it is invoked from Q by fp (5). Draw the stack and
all the static and dynamic links at the time of call.

We can take a direct solution to this problem and represent a procedural actual pa-
rameter as a two-element record:

1. The ip (or instruction pointer) field contains the entry address of the actual procedure.
2. The ep (or environment pointer) field contains a pointer to the environment of definition

of the actual procedure.

Such a record is called an ep-ip pair, or closure.

6.2 PROCEDURE CALL AND RETURN 227

If fp represents the location in an activation record of the closure passed for a procedural
parameter, then fp . EP is the ep part of this closure. (Note that fp is a parameter that must be
accessed like any other parameter, that is, by using the variable accessing method described
in Section 6.1.) Hence, the static link in the callee’s activation record can be set by

M[SP].SL := fp.EP; set static link

This solves the problem of accessing the callee’s environment of definition.

Consider again the code sequence in Figure 6.3. There is another problem. The second
to the last step allocates space for the callee’s activation record. This requires knowing the
size of this activation record, which depends on the number of local variables declared in

= the corresponding actual procedure. One solution is to pass this information along with the
closure; a simpler solution is to make this allocation instruction the first instruction of each
procedure. At this point the compiler knows exactly how much space is needed.

The final step, entering the procedure, also requires access to the closure since different
procedural actuals have different entry points. Thus the closure specifies the entry address
of the argument procedure (ip) and the context in which it must execute (ep).

The resulting code sequence for calling a formal procedure is shown in Figure 6.6. Five
memory references are required (including two for accessing the ip and ep of the procedure).
Procedure exit must be the same as for normal procedures, Figure 6.4, since a procedure may
be called both directly and as a parameter.

How is the closure (the ep-ip pair) for a procedural actual parameter constructed? The
ip part is just the entry point to the procedure, which is a constant determined by the com-
piler. The ep part is the environment of definition of the procedure, which is accessed along
the static chain using the static nesting level in the procedure’s symbol table entry. For ex-
ample, to construct the ep-ip pair for P in the call Q (P), we must follow one link of the sta-
tic chain. The code for constructing a closure in M[SP] .PAR[1] is

M[SP].PAR[1].IP := entry(P); build ip part
AP := M[EP].SL; get environment of definition
M[SP].PAR[1l] .EP AP; build ep part

In general, if sd is the static distance between the declaration of a procedure P and a call that
uses P as the ith actual parameter, then the code to build the ep-ip pair for this parameter is

M[SP].PAR[1l] := eval. par. 1;
X transmit parameters
M[SP].PAR[n] := eval par. n;
M[EP] .IP := resume; save resume location
M[SP].DL := EP; set dynamic link
M[SP].SL := fp.EP; set static link
EP := SP; install callee’s AR
goto fp.IP; enter the callee
resume: resume location

Figure 6.6 Calling a Formal Procedure

228

IMPLEMENTATION OF BLOCK-STRUCTURED LANGUAGES

M[SP].PAR[1].IP entry (P) ; build ip part

AP := M[EP].SL; traverse first
static link

(sd - 1) X AP := M[AP].SL; traverse remaining
static links

M[SP] .PAR[1i] .EP

AP; build ep part

Notice that sd + 2 memory references are required: sd to access the environment of defini-
tion and 2 to store the ep and ip.

Pascal, Algol, and many other languages allow procedures and functions to be passed
as arguments to other procedures and functions. Considerations of regularity and symmetry
may lead us to ask if procedures and functions can be returned as results from other proce-
dures and functions. Allowing functions to accept and return other functions (that is, treat-
ing functions and procedures as first-class citizens) leads to a very powerful style of pro-
gramming, called functional programming, which is discussed in Chapter 10. Unfortunately,
most languages do not permit function-valued or procedure-valued functions. The reason is
simple. Suppose a function F were to return a procedure P local to F. Observe that the en-
vironment of definition of P is that activation of F and that whenever P is called it must ex-
ecute in that environment. Unfortunately, when F returns, its activation record is deleted from
the stack, so the environment of definition of P is destroyed. To implement procedure-
valued functions properly, it would be necessary to ensure that the activation record for F
be retained so long as P (or any other procedure local to F) could be called. It is not possi-
ble to accomplish this with simple stacked activation records of the kind we have described.
Functional programming languages must use a different discipline for the allocation and deal-
location of activation records.

B Exercise 6-8**: Describe a discipline for the allocation and deallocation of activation
records that properly implements function-valued functions (and procedure-valued func-
tions, etc.).

Nonlocal gotos Require Environment Restoration

One other construct found in Algol and Pascal (and most other block structured languages)
must manipulate the run-time stack: the goto. Why is this? Local gotos (i.e., gotos to a la-
bel local to the block or procedure containing the goto) are easy; they are implemented as
simple machine jumps. Nonlocal gotos (i.e., gotos to a label declared in a block or proce-
dure surrounding the block or procedure containing the goto) must restore the environment
to that of the label, otherwise the stack will not be in the state expected at the destination of
the jump. That is, the EP and SP registers must be restored to the values appropriate to the
environment of definition of the label. This is analogous to calling a procedure in its envi-
ronment of definition. Consider the Pascal program in Figure 6.7; the stack and registers just
prior to and after the ‘goto 1’ are shown in Figure 6.8. We can summarize these observa-
tions by saying that a goto transfers the locus of control from the goto to the label. Both the
site (IP) and context (EP) of execution must be altered.

Restoring the context at the destination of the goto requires restoring the EP and SP

6.2 PROCEDURE CALL AND RETURN 229

program A; A
r label 1;

— procedure B; B
—— procedure C; C

procedure D; D
[procedure E; E

begin

soro 1; goto 1;

end (E);

begin
E;
L—end (D);

begin
o (C
begin (<

—_

&
L—end (B);
begin

Figure 6.7 Example of a Nonlocal goto

registers. How is this accomplished? Getting to the environment of definition of the label is
just like getting to the environment of definition of a procedure: The symbol table entry for
the label contains the static nesting level of its definition so the static distance to the envi-
ronment can be computed at compile-time as the difference of the static nesting levels of the
use and definition of the label. Thus, EP can be set (at run-time) to the context of the label
by sd traversals of the static chain, where sd is the static distance between the goto and the
definition of the label:

sd X EP := M[EP]; scan down static chain
where sd = snl(goto) - snl(label)

and snl (x) is the static nesting level of x.

< old SP Figure 6.8 Stack and Registers before and after Nonlocal goto
E
-« old EP
D
C
B
- new SP
A
- new EP
L~

230

IMPLEMENTATION OF BLOCK-STRUCTURED LANGUAGES

The SP register points to the next available stack location above the current activation
record, so it can be restored by

SP := SP + size (AR of the label) ;

The size of the activation record is known to the compiler or can be computed from infor-
mation in the activation record.

The last step is to transfer to the address corresponding to the label, which is a
constant available to the compiler. The steps for a nonlocal goto can be summarized as
follows:

sd X EP M[EP] ;
SP := EP + size(AR of the label);
goto address(label) ;

We can see that the number of memory references to do a nonlocal goto is sd, which is the
static distance from the goto to the label.

B Exercise 6-9: What is the static distance between ‘goto 1’ and the definition of label
‘1> in the program in Figure 6.7?

Exercise 6-10: Some languages (e.g., Algol) allow labels to be passed as parameters
to procedures; this is analogous to passing a procedure or function as a parameter. De-
scribe in detail, including code sequences, the implementation of a label actual and a goto
to a formal label.

Summary of Static Chain Implementation

The memory references required for static chain implementation for variables and proce-
dures are summarized in Table 6.1. Do not take the actual numbers in this table too seri-
ously; they may vary from machine to machine depending on the number of available reg-
isters, the instructions provided, and the exact format of the activation records. They are
indicative of the costs, however, and will enable us to compare the static chain method to
other implementation methods.

TABLE 6.1 Cost of Static Chain Implementation

Operation Memory References
variable access sd + 1
procedure call sd + 3
procedure return 2

pass procedural actual sd + 2
formal procedure call 5

goto sd

6.3 DISPLAY METHOD 231

6.3 DISPLAY METHOD

Displays Allow Random Access to Contexts

We saw in the previous section that accessing a variable requires sd + 1 memory references,
where sd is the static distance from the use of the variable to its declaration. This is fine for
local variables but can become quite expensive for global variables in a deeply nested pro-
gram. The problem results from the sequential organization of the static chain; every access
to a nonlocal variable requires scanning down the static chain until its environment of defi-
nition is found. Performance could be improved if there were some way of getting directly

*to the environment of definition. This kind of direct access can be achieved by having an ar-
ray (a random access data structure) that contains pointers to all of the accessible contexts.
That is, if D is the array, then D[1] is a pointer to the activation record for the environment
at static nesting level i. Such an array is called a display. Figure 6.9 shows a stack and its
display. Notice that no EP register is required since the compiler knows the level at which
each statement will execute. Therefore, if a statement is to execute at level i, it can find its
activation record through D[i].

How does a display improve variable accesses? Recall that there are two steps in ac-
cessing a variable: (1) locating the activation record containing the variable and (2) locating
the variable within its activation record. In the static chain implementation, the first step re-
quired skipping down the static chain. With the display the activation record is immediately
accessible by D [snl], where snl is the static nesting level of the variable’s declaration (re-
call that this is a constant computed by the compiler and stored in the symbol table entry for
the variable). The second step is accomplished by adding the variable’s offset to the base ad-
dress given in the first step. Accessing a variable with coordinates (snl, offset) is accom-
plished by

fetch M[D[snl] + offset]

This requires two memory references: one to get the display entry and one to get the vari-
able itself. In some implementations the display is stored in high-speed registers, which means
that only one memory reference is required. In either case, the time required by the display

— Figure 6.9 Ex le of a Displ
BT0] gu ample of a Display

D[9]
unused D[8]
D[7]
D[6]
D[5]
D[4]
D[3]
D[2]
D[1]
Display Stack

§

1\

232 IMPLEMENTATION OF BLOCK-STRUCTURED LANGUAGES

method compares favorably with the sd + 1 memory references required by the static chain
implementation.

B Exercise 6-11: In the static chain implementation, access to a local variable requires
one memory reference (because sd = 0). In the display implementation, access to any
variable requires two memory references. Suggest a modification to the display imple-
mentation that accesses local variables in one memory reference.

Calls Require Saving the Display

Consider a call from static nesting level u to a procedure defined at static nesting level d. If
the procedure’s name is visible, then it must have been declared at the same or a lower sta-
tic nesting level than that from which it is being called. In other words, u = d. The stack be- ,
fore and after the call is shown in Figure 6.10. Notice that if the call is from level u, then
all of the display entries from D[1] to D[#] must be in use (i.e., contain pointers to acti-
vation records). Further, notice that if the environment of definition of the procedure is at
level d, then the procedure itself is at level d + 1, and the pointer to its own activation record
must goin D[d + 1] . This will destroy the previous contents of D[d + 1], which was
in use if u > d (which is often the case). Therefore, the previous contents of D [d + 1] must
be saved. (It is not necessary to save the contents of D [d + 2] through D[] at this time;
they will be saved if and when a call to the corresponding level takes place.)
To accomplish this we will set aside a field called EP in a procedure activation record
to hold the saved element of the display. The parts of an activation record for the display

method are

e PAR parameters

e IP resumption address

* EP saved display element ;
* DL dynamic link i

There is no SL (static link) field because the display has taken over its function.
We can get the code sequence for a procedure call with a display by taking the static

2

/
A\

d+1 . d+1

d d
'\ \
Display Stack Display Stack
Before After

Figure 6.10 Example of Procedure Call with Display

6.3 DISPLAY METHOD 233

M[SP].PAR[1] := eval par. 1;
. transmit parameters

M[SP] .PAR[n]

eval. par. n;

AP := D[u]l; get caller’s AR

M[AP].IP := resume; save resume location

M[AP].EP := D[d + 1]; save display element

M[SP].DL := AP; set dynamic link

D[d + 1] := 8p; install new AR

SP := SP + size(callee’s AR) ; allocate callee’s AR
- goto entry (callee) ; enter the callee

resume:

Figure 6.11 Procedure Call Sequence for Displays

chain version (Figure 6.3) and replacing the operation to set the static link with an instruc-
tion to save the display entry for the level of the callee. The resulting sequence is shown in
Figure 6.11. Notice that the number of memory references required (omitting parameter ini-
tialization) is 6. This is often cheaper than the sd + 3 references required in the static chain
implementation.

Returning from a procedure just reverses the operations of a procedure call. The IP and
the display element must be restored from the caller’s activation record, and the callee’s ac-
tivation record must be deleted. The code sequence is shown in Figure 6.12. Notice that
restoring the display drives up the cost: It requires five memory references to return with a
display but only two with the static chain.

B Exercise 6-12: Draw the state of the stack, display, and registers after each of the in-
structions in Figures 6.11 and 6.12.

B Exercise 6-13: Describe the implementation of procedural parameters with the display
method. As with the static chain method, it is necessary to make sure that the callee ex-
ecutes in the correct environment. Develop code sequences for passing procedures as ac-
tual parameters and for calling formal procedures (analogous to those in Section 6.2).
Compute the memory references required for each of these operations.

B Exercise 6-14**: (Difficult) Discuss the implementation of nonlocal gotos with the dis-
play method. How will you restore the display so that it correctly reflects the context of
the label? Develop the code sequences and compute the number of memory references
for a nonlocal goto. What conclusions can you draw?

SP := SP - size(callee’s AR) ; deallocate callee’s AR

AP := M[D[d + 1]].DL; get caller’s AR

D[d + 1] := M[AP].EP; restore display element
goto M[AP].IP; resume execution of caller

Figure 6.12 Procedure Return with Display

234

IMPLEMENTATION OF BLOCK-STRUCTURED LANGUAGES

Comparison of Static Chain and Display

Table 6.2 compares the number of references required by various operations using the sta-
tic chain and display implementations. What conclusions can we draw? Notice that the dis-
play implementation accesses nonlocal variables much more efficiently than the static chain
implementation. This was the motivation for the display method. On the other hand, the dis-
play implementation of procedures is a little less efficient than the static chain implementa-
tion. Whether the static chain or display implementation is better depends on the relative fre-
quency (at run-time) of procedure calls and variables accesses and on the average static
distance to each of these. Since most programs do many more variable accesses than proce-
dure invocations, the display is probably preferable.

Shallow Binding Method

The static chain and display methods are not the only possible implementation techniques
for block-structured languages. In one other method, sometimes called shallow binding, each
procedure is statically allocated one copy of its activation record (cf. FORTRAN activation
records, Section 2.3). This static copy always holds the information and local variables for
the most recent activation of that procedure. Since these activation records are stored at fixed
locations in memory, variable access is always efficient. How is recursion implemented?
Whenever a procedure is invoked, the contents of the static activation record area must be
pushed onto a stack so that the activation record area can be used by the new activation.
When the callee returns, the contents of the activation record will be restored from the stack.
Hence, the major cost in the shallow binding method is the cost of saving and restoring these
activation records on procedure call and return. Also, since the activation records are allo-
cated statically, their size is fixed so shallow binding cannot be used for Algol and other lan-
guages with dynamic arrays.>

B Exercise 6-15: Define and analyze the shallow binding method. Describe the code se-
quences for variable access, procedure call and return, and nonlocal gotos. Analyze the
number of memory references required for all of these operations and compare them with
the static chain and display methods. What conclusions do you draw?

TABLE 6.2 Comparison of Static Chain and Display

Operation Static Chain Display
local variable 1 2
nonlocal variable sd + 1 2
procedure call sd+3 6
procedure return 2 5

3 This is true so long as the arrays are allocated space in the activation record. If they are allocated space in
a separate heap, then the activation records may be constant size.

6.4 BLOCKS 235

B Exercise 6-16*: Some computers have a number of high-speed registers capable of
holding display elements. Usually there are not enough of these registers to hold the en-
tire display. Discuss a strategy for making efficient use of the display registers. Show
code sequences and estimate the number of memory references required for the various
operations (call, return, etc.).

6.4 BLOCKS

o

Blocks Are Degenerate Procedures

In Pascal, since the procedure is the only scope-defining construct, it is the only construct
that adds or deletes activation records to or from the stack. Other languages, including Al-
gol and Ada (which is discussed in Chapters 7 and 8), have another scope-defining con-
struct—the block.

Since activation records represent contexts and blocks define contexts, blocks will also
have to have activation records. These activation records will have to be created when the
block is activated (i.e., entered) and destroyed when the block is deactivated (i.e., exited).
This automatic allocation and deallocation of activation records provide the automatic dy-
namic storage allocation discussed in Chapter 3 (Section 3.3).

How is block entry-exit implemented? We can solve the problem of implementation of
blocks by reducing it to another problem that we have already solved—the implementation
of procedures. There is a clear similarity: When a procedure is entered, an activation record
is created, just as for a block; when a procedure is exited, its activation record is destroyed,
just as for a block. Thus, we can think of entering and exiting a block as calling and re-
turning from a procedure.

To see how this can be, consider the Algol program in Figure 6.13; it can be trans-
lated into the Pascal program in Figure 6.14. (We have translated an Algol program
into a Pascal program because Algol has blocks but Pascal does not and Pascal proce-
dures have local storage but Algol’s don’t.) Notice that each block has been turned into
a procedure that is invoked in exactly one place—where the corresponding block was
nested. A perfectly correct implementation of blocks would be to translate them into
procedures in exactly this way. We will see next that this is a little inefficient and that
a number of improvements can be made by considering the particular characteristics of
blocks.

Block Entry-Exit Is a Degenerate Call-Return

We derive the steps for block entry by considering the steps for procedure call (Figure 6.3)
one by one. The crucial differences result from the fact that a block corresponds to a proce-
dure that is called from exactly one place in the program. For example, we do not have to
perform the first step, saving the resume location, since for a block it is always the same—
the instruction immediately following the end. Similarly, we do not have to evaluate the

236 IMPLEMENTATION OF BLOCK-STRUCTURED LANGUAGES

begin Figure 6.13 Algol Program with Blocks
integer N;
N := 0;

™ begin

real sum, avg;

sum := 0.0;

real val;
3.14159;

C g
o
2,
I}

L end;
N := 2;
L end.

parameters because a block is equivalent to a parameterless procedure. Hence, the first step
that is relevant to block entry is setting the dynamic link*:

M[SP].DL = EP;

The next step in a procedure call is to find the environment of execution for the procedure
and to use this to initialize the static link. The environment of execution for Algol is always
the environment of definition, and the environment of definition for a block is always the
immediately surrounding block. That is, the static link of a block always points to the im-
mediately surrounding block, which is contained in the EP register. Therefore, the static link
of the new block is set by

M[SP].SL := EP;

Notice that the static and dynamic links are the same; more about this later.
The next steps in a procedure call install the new activation record and allocate its space
on the stack. This is also required for a block:

EP := SP;
gp := SP + size(AR);

The final step of a call, jumping to the beginning of the procedure, is not required for a block
since the first instruction of the block immediately follows the block entry code (ie., the
code for begin).

Block exit is patterned on procedure return (Figure 6.4). In this case, we omit jumping

4 We begin with the static chain method since it is simpler than the display.

6.4 BLOCKS 237

[_ procedure B1l; Figure 6.14 Pascal Program with Procedures Instead of
var N: integer; Blocks
F procedure B2;
var sum, avg: real;
begin
sum := 0.0;
L end {B2};
(;procedure B3;
var val: real;
begin
val := 3.14159;
L end {B3};
begin
N := 0;
B2;
N = 1;
B3;
N = 2;
L end.

back to the resume location since this always immediately follows the end (i.e., is the next
instruction following the exit code).

How can we improve these code sequences? Since the static and dynamic links are al-
ways the same for a block, there is no reason to have them both in a block activation record.
Therefore, we will eliminate the dynamic link. The result is that a block activation record
has a very simple structure:

* LV local variables
* IP resumption address
* SL static link

A resumption address (IP) is required because a block may call a procedure; hence we need
a place to save its state of execution.
The begin-end sequence, the code for entering and exiting blocks, is summarized in Fig-
ure 6.15. Note that only two memory references are required for entry and exit combined.
Why is it that blocks require only one link but procedures require two? The static link
leads to the statically prior context, and the dynamic link leads to the dynamically prior con-
text. For a block, the statically and dynamically prior contexts are always the same; hence,

238

IMPLEMENTATION OF BLOCK-STRUCTURED LANGUAGES

M[SP].SL := EP; set static link
EP := SP; install inner AR
gp := SP + size(block AR) ; allocate inner AR

body of innerblock

SP := SP - size(block AR) ; deallocate inner AR
EP M[{EP] .SL; reinstall outer block

Figure 6.15 Block Entry-Exit with Static Chain

only one link is required. To put it another way, a procedure may be activated in a context
other than that in which it is defined; hence, we distinguish between the environment of defi-
nition and the environment of call. This remote activation potential of the procedure is made
possible by the fact that a procedure has a name and hence may be activated anywhere that
name is visible.’ In contrast, a block has no name; it is anonymous. The result is that a block
can be activated in only one context—the context in which it is textually nested. Therefore,
for a block, the environment of definition and the environment of activation are the same—
the immediately surrounding block (or procedure). Thus, to be perfectly precise, the link in
a block’s activation record should be called neither the static link nor the dynamic link for
it is in fact both.

B Exercise 6-17: Draw the state of the stack and registers after each of the steps in Fig-
ure 6.15.

i Exercise 6-18*: Design an activation-record format for some computer with which you
are familiar. Write out the instruction sequences for block entry-exit, procedure call-
return, and variable access. Design the activation-record format to optimize these opera-
tions. Describe the different choices and trade-offs you have to make.

Exercise 6-19**: Investigate the call-return sequences used by some computer and lan-
guage for which you can obtain the appropriate documentation. Relate the instructions
and activation-record formats to the models discussed in this chapter. How are the basic
functions (save state of caller, etc.) accomplished?

Blocks Require Display Updating

Block entry-exit is also quite simple in the display implementation. First, let us consider
block entry. Figure 6.16 shows the display and stack before and after entry to a block at level
snl. We can see that space for the block’s activation record has been allocated on the top of
the stack and that the display entry D [sn/] has been set to point to this activation record. The

5 As we have seen, many languages, including Algol and Pascal, allow a procedure to be passed as a pa-
rameter to another procedure, which means that a procedure can even be activated from environments in
which its name is not visible.

6.5 SUMMARY 239

/ Dlsnl] ;
Dilsnl-1] Dlsnl-1]

Display Stack Display Stack
Before Before

- Figure 6.16 Block Entry with Display Method

previous contents of D [snl] must be saved in the block’s activation record since it may con-
tain a valid activation record pointer. Therefore, the code for block entry is

M[SP].EP := Dl[snl]; save display element
D[snl] := SP; add inner AR to display
SP := SP + size(locals); allocate space for inner AR

This requires three memory references (for display updating).
Block exit is even simpler: All that is required is to deallocate the block’s activation
record and restore the display:

SD := SP - size(locals); deallocate inner AR
D[(snl] := M[SP].EP; restore display element

This requires two memory references for restoring the display.
B Exercise 6-20*: Explain in detail why it is necessary to save and restore D [snl] dur-

ing block entry-exit. Write in skeleton form a program that would not work correctly if
this were not done.

6.5 SUMMARY

In this chapter we have seen one of the most important concepts in the implementation of
programming languages—the idea of an activation record. It can be formally defined:

The Activation Record

An activation record is an object holding all of the information relevant to one activa-
tion of an executable unit.

What is an “executable unit”? Most frequently it is a procedure, function, or program, al-
though in later chapters we will see other examples, such as coroutines and tasks. Generally,

240 IMPLEMENTATION OF BLOCK-STRUCTURED LANGUAGES

it is a part of a program that includes some code and a name context. Executable units are
capable of communicating with other executable units.

We have seen that in languages that provide recursive procedures there can be several
instances of a procedure in existence at one time. One of these may be active and the oth-
ers will all be suspended. Each of these instances, or activations, has a separate, private nam-
ing context (the local and nonlocal variables), although all of the instances of one procedure
share the same code, because the variables can be changed but the code cannot. The state of
an activation can be completely specified by giving its naming context (the ep) and by spec-
ifying the place in the code where it is executing (the ip).

The state of execution of a computer is also specified by an ep-ip pair; this pair is called

- the locus of control. The locus of control specifies the current instruction being executed (the
IP register) and the context of its execution (the EP register).

When a procedure is called, a new activation is created, which in turn requires the cre-
ation of a new activation record to hold the local context. In many languages (including Al-
gol, Pascal, and Ada), when an activation returns (or exits by a nonlocal goto), its activation
record is destroyed. This deallocation is possible since these languages do not permit reac-
tivating a deactivated procedure or accessing the local context of a deactivated procedure.
There are some languages that do allow these things, and in these the activation records must
be preserved after the procedure returns. (This is called a retention strategy as opposed to a
deletion strategy; see Berry, 1971.)

In the languages we have studied, at most one activation can be active at a time; the oth-
ers are all suspended, awaiting reactivation. Some languages permit more than one activa-
tion to be active at a time, which is called parallel or concurrent programming. In these lan-
guages there may be several loci of control, one for each (real or virtual) processor. Ada
(discussed in Chapters 7 and 8) is an example of such a language. Activations that can ex-
ecute concurrently with each other are usually called processes or tasks.

Finally, we have seen that the use of activation records generally leads to two-coordi-
nate addressing methods. For example, a variable is addressed by a pair comprising an en-
vironment pointer and a relative offset; the environment pointer provides an access path to
the activation record containing the variable, and the relative offset locates the variable within
that activation record. Similarly, when a procedure is passed as a parameter, it is a closure,
an ep-ip pair, that is passed; the ep specifies the environment of definition of the procedure
(an activation record), and the ip specifies the code to be executed. Since a thunk (Chapter
3) is essentially a procedural parameter, name parameters are also implemented by passing
closures. Similarly, label parameters are implemented by ep-ip pairs; the ep specifies the con-
text of the label, and the ip specifies the code to be executed.

In succeeding chapters we will see other language constructs that are implemented with
activations records and two-coordinate addressing. Thus, these are important ideas that should
be understood thoroughly.

1. Describe in detail the implementation of Algol’s dynamic arrays. Estimate the number of
memory references required to subscript a two-dimensional array and compare with the
number of memory references required for a Pascal or FORTRAN array.

2. Describe in detail the implementation of flexible arrays, that is, arrays whose size can
change while the array is in existence.

Jkk

4%

5.

10.
11.
12%,

EXERCISES 241

- Design a run-time organization that simplifies nonlocal gotos.

- Pick an existing computer and critique its support for block-structured languages. Suggest
changes that would improve its support.

Estimate the number of memory references required for procedure call and return in FOR-
TRAN. Compare this with the references required for Pascal procedures and discuss the
costs and benefits of the two mechanisms.

Estimate the cost of variable accessing if variable names were looked up at run-time rather
than being converted to static-distance/offset pairs at compile-time.

Describe a run-time organization for dynamically scoped block-structured languages. How
can you avoid character string comparisons every time a variable is accessed?

It is often useful to allow procedures in block-structured languages to call FORTRAN sub-
programs and vice versa. Describe in detail the implementation of this capability. Discuss
run-time organization, information needed by the compilers, required language extensions,
and so forth.

Produce detailed code sequences for some existing computer for variable accessing and
procedure call and return using the static chain method.

Do the same for the display method.
Do the same for the shallow binding method.

The C language avoids the problems of environment access by disallowing nested envi-
ronments (although recursive procedures are permitted). Discuss the pros and cons of this
solution.

