5 RETURN TO SIMPLICITY: PASCAL

5.1 HISTORY AND MOTIVATION

There Were Many Attempts to Extend Algol’s Applicability

Algol was so successful that there were immediate attempts to use its ideas in other appli-
cation areas. These included Algol-like languages for list processing, string manipulation,
systems programming, and artificial intelligence. There were several proposals to include the
input-output facilities that Algol lacked and that might have made it feasible to use Algol
for commercial programming.

PL/I Attempted To Be One Language for All Applications

PL/I, as we saw in Chapter 2, was IBM’s 1964 effort to design FORTRAN VI. The result-
ing language, which incorporated ideas from FORTRAN, Algol, and COBOL, was so dif-
ferent from FORTRAN that it was renamed PL/I (programming language one). PL/I com-
bined ideas from many sources, including the block structure of Algol, the record and file
handling capabilities of COBOL, and the syntactic style of FORTRAN. The result was a
very large language—perhaps the largest ever to achieve widespread use. It is more like the
union of FORTRAN, COBOL, and Algol than their intersection. The promoters of PL/I ar-
gued that users could learn just the subset of the features that were relevant to their appli-
cations. This turned out not to be possible since the subtle and unpredictable interactions
among the various features of PL/I meant that, practically, programmers had to be aware of
the entire language. As a result, PL/I has become the classic example of a “Swiss army knife”
approach to language design; that is, the attempt to provide in one language all the gadgets
or features that anyone might ever want. The result is inevitably a language so large as to
be unmanageable and too complicated to be mastered by most programmers. Dijkstra, Hoare,
and several other computer scientists have severely criticized PL/T; in Chapter 2 we cited
Dijkstra’s characterization of PL/I as a fatal disease. In his Turing Award paper, he called
PL/I “a programming language for which the defining documentation is of a frightening size
and complexity. Using PL/I must be like flying a plane with 7000 buttons, switches, and
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handles to manipulate in the cockpit.” This is an example of fear resulting from a loss of
control and from the excessive power of an overelaborated tool (Section 1.4).

Extensible Languages Were Another Approach

Many programming language designers believed that it was futile to design a language that
was all things to all programmers. After all, we do not try and make do with one camera that
is suitable for everyone and everything—for professionals, amateurs, beginners; for science,
art, astronomy, advertising, and so forth. Rather, these designers believed that a more effec-
tive approach was to have a closely knit family of application-oriented languages. Of course,
the cost of implementing all of these languages would be prohibitive, so it was necessary to
develop a new approach to language implementation. This was the extensible language ap-
proach; the idea that one is given a simple, application-independent kernel, or base, language
and an extension mechanism that allows the kernel language to be extended into various
application areas. Early examples of extensible languages are the MAD language and
Mcllroy’s “syntax macros.”

A Simple Kernel Language Was Necessary

The kernel language had to be simple and efficient since it would form the basis for all the
application-oriented languages. Further, it had to be application independent so that it would
be useful for implementing extended languages in a wide variety of application areas. The
most common choices for kernel languages were simple subsets of Algol-60 (with somewhat
more general data structuring capabilities). Since, as opposed to PL/I, the goal was to have
as small a kernel language as possible, the extensible language effort produced useful expe-
rience about the minimal facilities required in a usable language.

There Were Many Kinds of Extension

Extensible languages varied greatly in the forms of extension they provided. A form
common to almost all these languages was operator extension, the ability to define new,
application-oriented operators. For example, if a programmer wanted to use ‘x # y’ for
the symmetric difference between two real numbers, a typical operator definition would be

operator 2 x # y; value x, y; real x, v;
begin
return abs(x-y)
end;

We can see that this is a lot like an Algol procedure declaration, except that the template ‘x
# vy’ is used in place of a procedure heading like dif (x, vy).The 2 following opera-
tor indicates the precedence of the new operator; for instance, 1 might be the precedence of
the relational operators (=, <, >, etc.), and 3 might be the precedence of the additive op-
erators (+, —).
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Other languages went much further by providing syntax macros that allowed the pro-
grammer to introduce new syntax into the programming language. For example, a summa-
tion notation might be defined.

real syntax sum from i = 1lb to ub of elem;
value 1lb, ub;
integer i, 1lb, ub; real elem;

begin real s; s := 0;
for i := 1lb step 1 until ub do
s := s + elem;
return s
end;

In this case, the syntactic template replaces the usual heading, such as sum (i, 1b, ub,
elem). This definition allows the programmer to write statements such as

Total := sum from k = 1 to N of Wagesl[k];
instead of the usual
Total := sum (k, 1, N, Wagesl[k]):

The intention was that programmers could use the notations familiar in their application
areas.

Extensible Languages Are Usually Inefficient

Unfortunately, extensibility usually resulted in comparatively inefficient languages. First, the
necessity of handling a variable syntax made extensible compilers large and unreliable. Sec-
ond, the fact that all source constructs were ultimately reduced to kernel language constructs
meant that minor inefficiencies in the kernel implementation became magnified at the ap-
plication language level. Part of this inefficiency is unavoidable since there is always a small
overhead associated with the concatenation of kernel language constructs that might have
been avoided by implementing the extended facilities directly.

Extensible Languages Have Poor Diagnostics

Another problem with extensible languages was their poor diagnostics. Since most of the er-
ror checking (for instance, checking for type compatibility) was done by the kernel language
compiler, most diagnostics were issued in terms of kernel language constructs. This loss of
transparency was, of course, confusing for users working at the application language level.

These problems, and others, ultimately defeated extensible languages. Although they
were once the most active area of programming language research, they are now rarely dis-
cussed. This does not imply that all of their ideas have been abandoned; we will see that the
idea of extensible data types has been incorporated into Pascal and its successors and that a
limited form of operator extension is provided by Ada (Chapters 7 and 8).
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Wirth Designed a Successor to Algol-60

After the release of the Revised Report on Algol-60, the Algol committee continued to meet
in order to develop a successor to Algol-60. Niklaus Wirth and C. A. R. Hoare, in their ar-
ticle “A Contribution to the Development of Algol” (in the Communications of the ACM),
had already suggested several modest but important improvements to Algol-60. In 1965 these
ideas were presented to the Algol committee, which rejected them in favor of the larger,
more subtle, excessively complex language now known as Algol-68.

The language that Wirth presented was implemented at Stanford University and became
known as Algol-W. It was used as an instructional language at Stanford and several other
universities for many years. In the meantime, Wirth had designed and implemented two other
programming languages—Euler and PL360—which, like Algol-W, were characterized by
their extreme simplicity.

A Competitor to FORTRAN Must Have Clear Advantages

The experience with first- and second-generation languages (such as FORTRAN and Algol-
60) had led to the belief that useful languages with powerful facilities were inefficient at
both compile-time and execution time. Further, there was the long-standing belief that dif-
ferent languages were needed for commercial and scientific programming, a belief that was
reinforced by the failure of PL/I. Wirth knew that if a new language were to be a significant
competitor to FORTRAN, it would have to have clear advantages, such as the ability to han-
dle nonnumeric data, and at the same time maintain the compile-time and run-time efficiency
of FORTRAN. Wirth saw that it was Algol’s data types that limited its applications to sci-
entific applications, so his approach was to start with Algol-60, eliminate the ill-conceived
or expensive features, and expand the data structuring capabilities while maintaining its ef-
ficiency. These considerations were the motivation for the Pascal language.

Pascal Combines Simplicity and Generality
The Pascal design had explicitly stated goals:

1. The language should be suitable for teaching programming in a systematic way.
2. The implementation of the language should be reliable and efficient, at compile-time and
run-time, on available computers.

The development of Pascal began in 1968 and resulted in a compiler written entirely in
Pascal in 1970. The Pascal Report’s brevity, 29 pages, compares favorably with the Algol-
60 Report’s 16 pages. The language was slightly revised in 1972 and became an interna-
tional standard in 1982.! The spread of Pascal was aided by the development in 1973 of a
portable Pascal system comprising a compiler (written in Pascal and generating P-code, a

1 See the International Organization for Standards’ Specification for Computer Programming Language Pas-
cal, ISO 7185-1982, 1983.
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pseudo-code designed for Pascal) and a P-code interpreter written in Pascal. In particular,
the availability of this system encouraged the use of Pascal on microcomputers in the late
1970s and early 1980s. Pascal has become very popular as a language for teaching pro-

gramming and is widely used on microcomputers. Therefore we will take it as an example
of a third-generation programming language.

5.2 DESIGN: STRUCTURAL ORGANIZATION

Pascal’s Syntax Is Algol-Like

Figure 5.1 displays a small Pascal program to compute the mean of the absolute value of an
array. Notice that the general style of Pascal is very similar to Algol; it is an Algol-like lan-
guage. In this chapter we will show all of the reserved symbols of Pascal in boldface. This
will simplify distinguishing built-in and user-defined constructs. Unlike Algol’s keywords,
Pascal’s reserved words are not typed differently from identifiers.

program AbsMean (input, output) ;

const Max = 900;
type index = 1 .. Max;
var

N: O .. Max;

Data: array [index] of real;
sum, avg, val: real;
i: index;
begin
sum := O;
readln (N) ;

for i := 1 to N do
begin
readln (val);
if val < O then Datal[i] := -val
else Datal[i] := wval
end;

for i := 1 to N do
sum := sum + Datal[i];

avg := sum/N;
writeln (avg)
end.

Figure 5.1 A Pascal Program
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There Are New Name, Data, and Control Structures

Pascal includes important additions to Algol’s name, data, and control-structuring mecha-
nisms. We can see examples of variable declarations in Figure 5.1; they are introduced by
the word var and have the syntax

(names) : (type);

Procedure and function declarations are quite similar to Algol’s except that the begin comes
after the local declarations rather than before them:

procedure (name) ({formals));
(declarations)

begin
(statements)

end;

In addition to variable and procedure declarations, Pascal has constant and type bind-
ings. We can see this in Figure 5.1; Max is declared to be a constant equal to 900, and in-
dex is declared to be the type of integers in the range 1 to MAX. This new data type is then
used in the declarations of the array Data and the variable i. Type declarations are intro-
duced by the word type and have the syntax

(name) = (type)

In Section 5.3 we will see that Pascal has added a character data type for nonnumeric
programming and a variety of data type constructors for arrays, records, sets, pointers, and
so forth. Programmers can use these, in conjunction with type declarations, to design data
types specifically suited to their applications.

Pascal’s control structures incorporate many of the ideas of structured programming. Of
course the if-then-else and for-loop (in a very simplified form) are provided. Pascal also
provides leading and trailing decision loops and a case-statement for handling the breakdown
of a problem into many cases. The goto is also provided.

5.3 DESIGN: DATA STRUCTURES

The Primitives Are Like Algol-60’s

Recall that Algol-60 has three primitive data types: reals, integers, and Booleans. These, in
turn, were very similar to the primitive data types provided by FORTRAN. This reflects the
fact that both of these languages are predominantly scientific programming languages, and
numbers and logical values are the most useful objects for scientific programming. Pascal
extends its applicability to commercial and systems programming by providing one addi-




5.3 DESIGN: DATA STRUCTURES 173

tional primitive data type, characters. A variable of type char (character) can hold exactly
one character; longer strings of characters are manipulated as arrays of characters.

Enumeration Types Improve Security and Efficiency

Often programs must manipulate nonnumeric data; this is usually character data, but it can
also be more abstract. For example, a commercial data-processing program may need to be
able to deal with days of the week. In a language like FORTRAN or Algol, these would usu-
ally be encoded as integers, say in the range 0-6. This coding can make a program very hard
to read unless it is carefully commented:

today := 2; comment Tuesday;
tomorrow := today + 1; comment advance to next day;

There is always the danger that the programmer will write the wrong code (do we start from
Sunday or Monday?) or that the reader will misinterpret the code. There ought to be some
way to avoid the error-prone use of numeric codes.

One approach that can be used in most languages is to initialize meaningfully named
variables to the proper values. In Algol we could write

begin integer today, tomorrow;
integer Sun, Mon, Tue, Wed, Thu, Fri, Sat;

Sun := 0, Mon := 1; Tue := 2; Wed := 3;
Thu := 4; Fri := 5; Sat := 6;

today := Tue;

tomorrow := today + 1;

This is certainly more readable and less error-prone to write. It still has problems, however.

The major problem is that today and tomorrow are just integer variables and, as far
as the compiler is concerned, it is meaningful to treat them as integers. For example, all of
these statements are legal, although they make no sense on days of the week:

today := 355;
tomorrow := -3;
today := (tomorrow - 100)/today + 5280;

This is a lack of security; the compiler is allowing us to write statements that have no mean-
ing (in our application domain).

The situation is even worse since we may have other logically different types that are
represented as integers:

begin integer gender, ThisMonth;
integer Jan, Feb, Mar, ... , Dec;
integer male, female;
Jan := 0; Feb := 1; ... ; Dec := 11;
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male := 0; female := 1;
today := male;

gender := (female + Thu) /Dec;
ThisMonth := 15;

Of course, errors as blatant as these are not likely to occur, but they illustrate the problem.
There is a loss of transparency in the program and the mechanism intrudes.

To eliminate this lack of security, Pascal provides enumeration types. This is a mecha-
nism for constructing types by enumerating, or listing, all their possible values. For exam-
ple, we can declare the types for months, days of the week, and sexes like this:

type
month = (Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec);
DayOfWeek = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
sex = (male, female);

(Notice that an enumeration type declaration is a binding construct since it binds the enu-
merated names, Sun, Mon, etc., to the values of the type.)

After these type declarations, it is possible to declare variables of these types and use
them as usual:

var
today, tomorrow: DayOfWeek;
ThisMonth: month;
gender: sex;

begin
today := Tue;
today := tomorrow;
ThisMonth := Apr;
gender := female;

The security of these declarations is preserved by not allowing incompatible assignments
(e.g., ThisMonth := male).

Pascal also preserves security by preventing the programmer from performing mean-
ingless operations on enumeration values. Remember that there are two parts to an abstract
data type: the set of data values and the primitive operations on those data values. For an
enumeration type, the set of data values is specified in the enumeration. The operations do
not have to be specified because they are the same for all enumeration types:

:=, succ, pred, =, < >, <, >, <=, >=

The ordering relations (<, >, etc.) are defined according to the order specified in the dec-
laration of the enumeration type; for example, Mon < Wed and Dec > Jan. The suce and
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pred (successor, predecessor) functions give the succeeding and preceding elements in the
list; for example, suce (Mon) = Tue and pred (Mar) = Feb. These operations are
also secure; for example, succ (Sat) and pred (Jan) are errors.

The implementation of enumeration types is very efficient. The compiler does essen-
tially what programmers would have to do if they did not have enumeration types: It assigns
consecutive integer codes to the values. There is an important difference (aside from secu-
rity), however. When the programmer declares a variable of type DayOfWeek, the compiler
knows that the only possible values are Sun, Mon, . . ., Fri. Therefore, the only values that
can be assigned to this variable are integers in the range 06, seven different values. Since
seven values can be represented in 3 bits, the compiler can use 3 bits to represent a Day -
OfWeek variable rather than the 16 or 32 that are usually required for an integer:

Sun Mon Tue Wed Thu Fri Sat
000 001 010 011 100 101 110

Operations such as succ and pred and the relations are very efficient since these are just im-
plemented as simple integer operations.
We can summarize the benefits of enumeration types:

1. They are high level and application oriented; they allow programmers to say what they
mean.

2. They are efficient since they allow the compiler to economize on storage, and the opera-
tions can be performed quickly.

3. They are secure since the compiler ensures that programmers cannot do meaningless op-
erations.

B Exercise 5-1: Write an enumeration type declaration for automobile manufacturers,
such as might be used in an automobile registration database system.

B Exercise 5-2: Write an enumeration type declaration for the different types of access
that a particular user might have to a file (read, write, etc.).

B Exercise 5-3: Write an enumeration type declaration for the different graphics file for-
mats that a graphics file viewer might support.

Subrange Types Improve Security and Efficiency

We have seen that the enumeration type improves security since the compiler can check if
the programmer is doing something meaningless, such as asking for the successor of the last
element in the enumeration. The Pascal subrange type constructor extends this checking to
integers and allows tighter checking on other types. Suppose the variable DayOfMonth is
going to hold the number representing a day of the month; the meaningful values of this vari-
able are the numbers 1-31. Although this could be declared as an integer variable, our pro-
gram will be more secure if we use a subrange type:

var DayOfMonth: 1 .. 31;

This means that DayOfMonth can hold values in the range 1-31 (inclusive).
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If we attempt to assign to this variable a value outside this range, we will get an error.
It has been observed that if a programmer consistently uses subranges, then many program
errors will manifest themselves as subrange violations. It is usually easier to find the cause
of a subrange violation than the cause of the more subtle errors that often result if the vio-
lation is not caught.

Subrange declarations also allow the compiler to economize on storage utilization. For
example, since DayOfMonth can take on only 31 different values, it can be stored in 5 bits
(since 25 = 32) rather than the 16 or 32 bits required for integers. This could make a big dif-
ference if we had a large array of such values.

Subrange types can be based on types other than integers. For example, we can declare
a type WeekDay whose only possible values are the days Monday through Friday:

type WeekDay = Mon .. Fri;

(Note that we are assuming the previous definition of DayOfWeek so that the names Mon
and Fri are defined.) Then, if we accidently assigned Sat or Sun to a variable of type
WeekDay, we would get an error. .

Pascal permits the programmer to define subranges of any discrete type, that is, enu-
meration types, integers, and characters. It does not permit defining a subrange of the real
numbers, which is a continuous type.

B Exercise 5-4: Write a subrange type declaration for the type age representing the age
of a child in school.

B Exercise 5-5: Write a subrange type declaration for the type WaterTemp represent-
ing water temperature in degrees Fahrenheit.

Set Types Are High Level and Efficient

Pascal provides the ability to manipulate small finite sets using the standard operations of
set theory. As we will see, the set type is almost an ideal data type; it is high level and ap-
plication oriented and yet very efficient. First, let’s investigate its capabilities.

The description of a set type has the form

set of (ordinal type)

where an (ordinal type) is an enumeration type (including char and Boolean), a subrange
type, or a name of one of these. These restrictions on the base type of set types allow its ef-
ficient implementation.

For an example, suppose we have two variables of a set type:

var S, T: set of 1 .. 10;

This says that each of S and T is a variable that can hold a set of the numbers from 1 to 10.
If we had declared S and T by

var S, T: 1 .. 10;
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then we would have said that S and T can each hold exactly one number in the range from
1 to 10. With the set declaration, S and T can each hold any group (including zero) of num-
bers in this range.

How do we get a set into these variables? In mathematics, if we want to say that S is
the set containing the numbers 1, 2, 3, 5, 7, we write

§S={1,2,3,57}
In Pascal, if we want to assign this set to the variable S, we write
S = [1 ’ 2 ’ 3 ’ 5 ’ 7 ]

We can see that Pascal has followed mathematical notation closely, although limited char-
acter sets have forced some deviations.

The sets in Pascal can be manipulated just like mathematical sets. For example, if we
have assigned

T := [1 .. 6]

then T contains the set [1, 2, 3, 4, 5, 6].]If we then form the intersections S N
T and store it in T by

T := S * T

the result will be that T contains [1, 2, 3, 5]. Notice that the produce notation ‘*’ is
used instead of the usual set notation ‘N’. After the above operation is performed, T has the
value [1, 2, 3, 5], which we can test with the equality relation:

if T = [1, 2, 3, 5] then

Similarly, the union (+) and difference (—) operations can be performed on sets.

If x is an integer in the proper range (1-10 in this case), then we can ask if x is in a set
by writing x in S. This is just the set theory x € S. For example, 3 in Sis true, but 6 in
S is false. Another common relation between sets is the subset relation. We say that SC T
if every member of S is also a member of 7. In Pascal this is written S < = T. For exam-
ple, if

s = [1, 2, 3, 5, 71, and

T = [1, 2, 3, 5]

then T < = S returns true. The relational operators ‘=", ‘< >’ (not equal), ‘< =’, and ‘>
=’ are provided among sets. Inexplicably, the proper set inclusion operations ‘<’ and ‘>’

are not provided. However, they are easy to implement; for example, S < T is equivalent
toS <= T and S <> T.

B Exercise 5-6: Show that the preceding definition of proper set inclusion (<) is correct.

The set-type constructor is very high level; it allows the programmer to write algorithms
in a natural notation. For example, suppose that we are writing a compiler; it is necessary to
categorize the characters in the program we are reading. This can be done by defining sets
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of characters that reflect the different categories, as is shown in Figure 5.2. Once the sets
digits, letters, and punctuation have been defined, any character can be classi-
fied by testing to see which set it is in. To find out if the character in ch is alphanumeric,
we just write

ch in letters + digits

since the alphanumeric characters are just the union of the letters and the digits.

One of the best characteristics of the set-type constructor is its efficiency. Consider our
example, S, which is of type set of 1 .. 10. This means that there are 10 potential
members of any set stored in S, the numbers 1-10. To know what set is stored in S, it is
only necessary to know, for each of these 10 numbers, whether that number is or is not in
the set. This means that the set S can be represented by 10 bits, with each bit being one if
the corresponding value is in the set and zero if it is not. For example, the set [1, 2, 3,
5, 7] is represented by the bits

s = 1 1 1 0 1 0 1 0 0 0

(N A A A A A N
1 2 3 4 5 6 7 8 9 10

This means that 1 is in the set, 2 is in, 3 is in, 4 is not, 5 is, and so on. This is certainly a
compact representation: We have represented a set containing up to 10 numbers in only 10
bits! Other sets require different size bit strings. For example, a set of WeekDay will

var digits, letters, punctuation: set of char;

ch: char;
begin
digits := [(’0O’, "1', '2", 3", '4', '5", '6', 7", 8", '9'];
letters := ['a’, 'b’, 'c¢’', ’'d’', 'e’, '£’, 'g’, 'h’', '1i’",
‘5, 'k’, '1’, 'm’, 'n’, ‘o', 'p’', 'q’, 'r’,
‘'s’, 't 'ut, v, 'w, 'k, 'y, 'z,
‘a’, 'B’, 'C’, 'D', 'E’, 'F’, 'G', 'H', 'I’
'g’, 'K’, 'L’, 'M’, 'N’, 'O’, 'P’, 'Q’, 'R’,
's’, ‘T, 'uUr, VY, W, XY, 'Y, 20
punctuation := [" (', ")‘', ‘., ', Syt et U]
read(ch) ;
if ch in letters then ... handle letters
else if ch in digits them ... handle digits
else if ch in punctuation then ... handle punctuation ...
else ... handle illegal characters
end

Figure 5.2 Using Sets to Classify Characters
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require only 5 bits (since there are only five weekdays). If there are 256 characters in the
character set, then a set of char will require 256 bits.

We have seen that sets are represented very compactly. How efficient are the set oper-
ations? It turns out that the set operations are simple to implement and very fast. Consider
set intersection: We want an element to be in the intersection only if it is in both of the
operand sets. In other words, we want the element’s bit to be set in the result set only if it
is set in both of the operand sets. This is just an ‘and’ operation on the bit strings. This ex-
ample shows how doing a bit-by-bit ‘and’ between S and T gives the bits for S * T:

S =1 1 1 0 1 0 1 0 0 0
T = 1 1 1 1 1 1 0 0 0 0
s*r = 1 1 1 0 1 o0 0 0 0 O

You are probably aware that most computers have instructions for performing a logical ‘and’
between bit strings; in fact, these are often the fastest operations a computer can do, faster
even than integer arithmetic. Of course, if the set takes more bits than will fit in a word, then
several ‘and’s may be required. For example, with a 32-bit word size, it will take eight
(256/32) ‘and’s to intersect two sets of characters. This is still quite efficient.

The other set operations are also simple: Union is a logical ‘or’, complementation is a
logical ‘not’, and equality and inequality tests are simple comparisons of the bit strings. Test-
ing whether a given value is a member of the set, x in S, reduces to determining if the
bit corresponding to x is set. On most machines this can be accomplished by shifting this
bit into the most significant position and doing a sign test. Again, this is very efficient. A
subset test is performed by an ‘and’ and equality test since

S<=Tifandonlyif S=S*T

The other relations are implemented similarly.

In summary, the set-type constructor is almost ideal: It is very high level, very readable,
and efficiently implemented. It also enhances security because it does all the normal type
checking and it saves programmers from having to do their own error-prone bit manipula-
tion. The set type illustrates

The Elegance Principle

Confine your attention to designs that look good because they are good.

B Exercise 5-7: Write a type declaration for sets of days of the week.

B Exercise 5-8: Write a test, using set operations, for determining if the character in ch
is not alphanumeric.

Array Types

Algol-60 generalizes FORTRAN arrays in two respects: It allows any number of dimensions
and it allows lower bounds other than one. We will see that Pascal has generalized Algol’s
arrays in some respects and has restricted them in others.
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One of the generalizations is in the allowable index types. In FORTRAN and Algol, ar-
rays could be subscripted only by integers; in Pascal they can be subscripted by many other
types, including characters, enumeration types, and subranges of these. This is simple to un-
derstand. Suppose we declare an array A, holding 100 reals, indexed by the integers 1 to 100:

var A: array [1 .. 100] of real;

Notice that the dimensions of the array have been specified as a subrange of the integers.

Now, suppose we wanted an array to record the number of hours worked on each of the
days Monday through Friday. We could declare an array with the dimensions 1 .. 5, but
we have already discussed the disadvantages of manually encoding things as integers. A bet-
ter approach is to use a subrange of DayOfWeek as the index type:

var HoursWorked: array [Mon .. Fri] of 0 .. 24;
Think of this as a table whose entries are labeled with Mon, Tue, ..., Fri:
Mon | Hours
Tue
Wed
Thu
Fri
o
Notice that we have also made the base type of the array 0 .. 24 since we know that it

is impossible to work fewer than zero or more than 24 hours in a day. This adds security to
our program.

Arrays subscripted by noninteger index types can be used in the usual way. For exam-
ple, to find the total number of hours worked in the week:

var day: Mon .. Fri;
TotalHours: 0 .. 120;
begin
TotalHours := 0;
for day := Mon to Fri do
TotalHours := TotalHours + HoursWorked[dayl];

Notice that it is not necessary to check the bounds of HoursWorked at run-time; since day
is of type Mon .. Fri it cannot hold an illegal subscript value. This is one of the
advantages of using subranges: Much checking can be done at compile-time rather than
run-time.

Actually, any finite discrete type (i.e., any type that can be represented as a finite con-
tiguous subset of the integers) can be used as an index type. For example, if we wanted to
count the number of occurrences of different characters, we could declare

var Occur: array [char] of integer;
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Then, Occur[ch] := Occur[ch] + 1 would increment the number of occurrences
of the character in ch. We could test if there are more ‘e’s than ‘t’s by

if Occur[’e’] > Occur[’t’] then

Another way in which Pascal generalizes Algol arrays is in the allowable element types.
In Algol the programmer is allowed to have arrays of reals, integers, or Booleans (since these
are the only data types in the language). In Pascal any other type can be the base type of an
array type. That is, we can have arrays of integers, reals, characters, enumeration types, sub-
ranges, records, pointers, and so forth.

In general, a Pascal array-type constructor has the form

array [(index type)] of (base type)

where (index type) is any finite discrete type and (base type) is any type at all. Thus, Pas-
cal arrays can be considered finite mappings from the index type to the base type.

So far we have discussed only one-dimensional arrays. Does Pascal allow multidimen-
sional arrays? In fact, it does not, although the other generalizations of Pascal more than
compensate for their absence. Suppose we need a 20 X 100 array of reals M; this can be con-
sidered a 20-element array, each of whose elements is a 100-element array of reals. That is,

var M: array [1 .. 20] of array [1 .. 100] of real;

As we said, the base type of an array can be any type, including another array type.
Subscripts can be combined to access any element of the matrix. For example, since
M[3] is the third row of M, M[3] [5] is the fifth element of the third row of M; in other
words, Mss. Pascal allows the programmer to use more standard notation by providing
M[i,J] as syntactic sugar for M[i] [j]. Similarly, the declaration of M can be written

var M: array [1 .. 20, 1 .. 100] of real;

although it is still interpreted as an array of arrays. Thus, although the programmer has lost
neither power nor convenience, the language and the compiler have been simplified because
they have to deal only with one-dimensional arrays.

Problems with Array Bounds

There are two significant ways in which Pascal’s arrays are more restrictive than Algol’s.
Recall that Algol has dynamic arrays: The bounds of the array are computed at scope entry
time and can vary from one activation of the scope to another. This is not the case in Pas-
cal; all arrays are static just as in FORTRAN. Why was this useful, efficient facility deleted?
One reason was that dynamic arrays are a little less efficient than static arrays, but this does
not seem to be the primary reason. Rather, static arrays are implied by two fundamental de-
sign decisions in Pascal:

1. All types must be determinable at compile-time.
2. The dimensions are part of an array type.

The first decision is required in order to be able to do type checking at compile-time.
The result is that all Pascal objects have static types; they cannot change at run-time. The
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second decision means that two array types are considered the same if their index types match
and their base types match. This is usually reasonable; it does not make much sense to as-
signa 1l..100 array of reals to a —20. . 20 array of reals. Notice, however, that these two
decisions interact to imply static arrays: Since the dimensions are part of the type and the
type must be static, the dimensions also must be static. In this case, the feature interaction
is not too serious; we can live without dynamic arrays, particularly in a language intended
for teaching. Next we will discuss a more serious example of feature interaction.
Consider these two Pascal? design decisions (we have already discussed the first):

1. The dimensions are part of an array type.
2. Pascal enforces strong typing; therefore, types of actuals must agree with types of for-
mals.

Generally, strong typing says that in any context in which a thing is used, the type of that
thing must agree with the type expected in that context. In particular, the types of actual pa-
rameters must agree with the types of the corresponding formal parameters. Since the di-
mensions of an array are part of its type, this means that the dimensions of an actual array
parameter must agree with the dimensions of the corresponding formal array parameter. Let’s
look at an example.

type vector = array [1 .. 100] of real;
var U, V: vector;

function sum (x: vector): real;

begin ... end {sum};

Given these definitions, it is perfectly legal to write sum (U) and sum (V) since the types
of U and vV match the type of x. Suppose we have another array W, of length 75:

var W: array [1 .. 75] of real;

It is not legal to write sum (W) because the types of W and x don’t agree. If we want
to sum the elements of W, we will have to write another sum procedure that works on 75-
element arrays! In fact, our sum procedure will not even work on 100-element arrays whose
index type is 0..99! We will have to write a separate sum procedure for every different
length array that appears in our program (and that we want to sum).

This situation is a terrible state of affairs; it is a gross violation of the Abstraction Prin-
ciple. Furthermore, it makes Pascal almost unusable for programs that perform similar ma-
nipulations on a large number of different size arrays, such as scientific programs. It is im-
possible to write a general array manipulation procedure in Pascal. We can see that this results
from the interaction of two design decisions that separately seem quite reasonable. Antici-
pating undesirable feature interactions is one of the most difficult aspects of language
design.

We will see in Chapter 7 that Ada has eliminated this problem, as well as restored dy-

2 We mean the Pascal of the Revised Report (Jensen and Wirth, 1973). Although the problem has been cor-
rected in the ISO Standard, it is still a good illustration of feature interaction.

e
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namic arrays, by changing the decision on which both restrictions are predicated: Dimen-
sions are not considered part of an array type in Ada. The Pascal standardization efforts have
solved the array parameter problem by defining a conformant array schema that can be used
to specify a formal parameter. Thus, if we write the header for sum as follows:

procedure sum (x: array [lwb .. upb: integer] of real): real;

then any real array indexed by integers can be passed to sum. The calls sum (U), sum(V),
and sum (W) are all legal. On each call of sum the identifiers 1wb and upb are bound to
the lower and upper bounds, respectively, of the index type of the actual corresponding to
x. A typical use of these identifiers would in the limits of a for-loop:

for i := lwb to upb do
total := total + x[il;

The syntax of a simple conformant array schema is

array [(identifier) .. (identifier) : (type identifier)] of (type identifier)

Although conformant array schemas solve the array parameter problem, they do so at the ex-

pense of extra language complexity.

# Exercise 5-9*: Discuss conformant array schemas as a solution to the array parameter
problem. Do you think the right decision was made? Can you suggest an alternative?

i@ Exercise 5-10*: Suppose strings are represented as arrays of characters. What prob-
lems would you face upon implementing a string manipulation package in Revised Re-
port Pascal (i.e., Pascal without conformant array schemas)? Discuss possible solutions.

B Exercise 5-11*: Write the procedure headers for a string manipulation package for ISO
Standard Pascal (i.e., Pascal with conformant array schemas).

B Exercise 5-12: Write a set of Pascal procedures for performing mathematical opera-
tions (sum, inner product, length, etc.) on real vectors of any dimension.

Exercise 5-13*: The ISO Pascal Standard defines two “levels of compliance.” A com-
piler complies at level 1 if it implements all of the standard except conformant array
schemas; it complies at level 2 if it implements all of the standard including conformant
array schemas. Why do you suppose there are these two levels of compliance? Discuss
the pros and cons.

Record Types Group Heterogeneous Data

One of the most important data structure constructors provided by Pascal is the record-type
constructor. This is a data structure that allows arbitrary groupings of data. The idea first ap-
peared in commercial data-processing languages such as COBOL; in the mid-1960s Hoare
suggested adding the facility to scientific languages. Records appeared in both Algol-W and
several extensible languages.

A typical example of a record, a personnel record, appears in Figure 5.3. Just like an ar-
ray, a record has a number of components. Unlike an array, however, the components of a
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type person =
record

name: string;
age: 16 .. 100;
salary: 10000 .. 100000;
sex: (male, female);
birthdate: date;
hiredate: date;

end;
- string = packed array [l .. 30] of char;
date = record
mon: month;
day: 1 .. 31;
year: 1900 .. 2100;
end;
month = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct,

Nov, Dec);

Figure 5.3 Example of a Record Type—A Personnel Record

record can be of different types, as we can see in the definition of person. Notice also that
the components of records can themselves be complex data types. For example, the name
component is a string, which is a 30-element array of characters. Hence, records can con-
tain arrays. Also, the birthdate and hiredate components have the type date, which
is itself a record with three components. Hence, records can contain other records.

The components of arrays are selected by subscripting. How are the components of
records selected? Suppose we have declared newhire to be a variable of type person:

var newhire: person;

A component of a record is selected by placing a period between the name of the record and
the name of the component. For example, to set newhire’s age and sex we can write

newhire.age := 25;
newhire.sex := female;

If today is a variable of type date, then newhire’s hiredate can be set to today by
newhire.hiredate := today;

Notice that this is an assignment of one record variable to another. This is legal since the
record name denotes the entire record, which can be assigned and compared for equality—
like variables of any other types.

Selectors for records and arrays can be combined as needed to access a particular com-
ponent. For example, since newhire.hiredate is itself the name of a record, we can use
the dot notation to select its components. To set the date of hire to June 1, we can write
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newhire.hiredate.mon := Jun;
newhire.hiredate.day := 1;
Similarly, we can test whether the first character of newhire’s name is an ‘A’ by
if newhire.name[l] = ‘A’ then
As another example, we can use an array to hold the personnel records of all our employees:

type employeeNum = 1000 .. 9999;
var employees: array [employeeNum] of person;
EN: employeeNum;

If we now wish to get the year of birth of the employee whose number is in EN, we can write
employees [EN] .birthdate.year

Notice that [EN] .birthdate.year essentially defines an access path to a particular
component of the employees data structure.

Observe that a record type is a scope-defining structure in Pascal; it groups the field
names together. The field names are not visible outside of the record declaration unless a
record is “opened up” with the dot operator.

If a number of successive statements reference fields of one record, such as

newhire.age := 25;
newhire.sex := female;
newhire.salary := 30000;

then Pascal permits this record to be opened once for all of them. This is accomplished by
the with-statement:

with newhire do

begin
age := 25;
sex := female;
salary := 30000
end;

This ability to enter another environment and make its names visible becomes very impor-
tant in the fourth-generation languages discussed in Chapter 7.

You may have wondered why Pascal includes both arrays and records since they are
both methods of grouping data together. They differ in two important respects. Arrays are
homogeneous (homo = same; genus = kind), that is, all of the components of an array are
the same type; records are heterogeneous (hetero = different), that is, their components do
not have to be the same type (consider person). In this sense records are more general than

arrays.

The other difference between arrays and records is in their manner of selecting compo-
nents. We can select specific array elements with expressions like A[1], A[2] just as we
can select specific record components with expressions like R.mon, R.day. The difference
is that we can compute the selector to be used with arrays; that is, we can write A[E] where
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E is an expression whose value will be known only at run-time. This is an important feature
since it allows, for example, writing a loop that processes all the elements of an array. This
cannot be done with records; we cannot write an expression like R . E, where E may refer to
any of the fields mon, day, or year. Why? Recall that it is a basic design decision of Pas-
cal that all types can be checked at compile-time (i.e., that Pascal is statically typed). Since
all of an array’s elements are the same type, the compiler knows the type of A[E] even if
it does not know which element will be selected. This is not the case with records: R . E has
different types, depending on whether E is mon, day, or year. The differences between ar-
rays and records are summarized in the following table:

Composite Data Structures

Element types Selectors
Array homogeneous dynamic

(less general) (more general)
Record heterogeneous static

(more general) (less general)

B Exercise 5-14: Define a record type automobile, including all auxiliary declara-
tions, for an application such as an automobile registration database. Automobiles should
have attributes such as manufacturer, model, year, value, owner, and so forth.

Variant Records Allow Alternative Structures

Next, we discuss another kind of record: variant records. To see their motivation, suppose
that we are writing a program to keep track of all of the airplanes of an airline company.
What data structure should we use? A record is the natural choice since each plane will have
a number of different attributes and these will surely be of different types. What are some
of these attributes? For all planes we will want to know the flight number and the type of
aircraft. If a plane is in the air, then it will have an altitude, heading, arrival time, and des-
tination. If it is landing or taking off, then it will have an airport and runway number. If it
is parked at a gate at the terminal, then it will have an airport, gate number, and departure
time. Possible type declarations are shown in Figure 5.4.

There are at least two problems with this approach. First, it is inefficient. A plane
record will have to contain space for all of these fields, even though some of them cannot
be in use at the same time. For example, since a plane cannot be in the air and parked at a
gate at the same time, it cannot have an altitude and a gate number at the same time. It would
be helpful if, like Algol blocks, there were some way to declare disjoint subrecords that could
not be in use at the same time.

There is also a potential security problem in this record definition. It allows us to per-
form meaningless operations, such as to ask the altitude of a plane whose status is on-
Ground. What we need is some way of grouping the different fields according to the sta-
tus with which they are associated. This is the function of a variant record.

The situation with which we are faced is the following: Certain attributes are possessed
by all planes, regardless of their status (i.e., flight number and kind of aircraft). Other at-
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type plane = record
flight: 0 .. 999; {flight number}
kind: (B727, B737, B747);
status: (inAir, onGround, atTerminal) ;
altitude: 0 .. 100000; {feet}
heading: 0 .. 359; {degrees}
arrival: time;

destination: airport;

location: airport;

runway : runwayNumber ;

parked: airport;

gate: 1 .. 100; {gate number}
departure: time

end {plane};

time = packed record hrs: 00 .. 23; min: 00 .. 59 end;

airport = packed array [1 .. 3] of char;

runwayNumber = packed record dir: (N,E,S,W); num: 00 .. 99
end;

Figure 5.4 Record without Variants

tributes have meaning only when the plane is in a certain status. What we need is a record
type with a variant for each possible situation in which a plane can be. Such a variant record
is illustrated in Figure 5.5.

The status of a plane at a given time is indicated by the value of the tag field, status.
Since the status of a plane can be only one of (inAir, onGround, atTerminal) at
a time, the fields in different variants cannot be in use at the same time. This means that,
just like disjoint blocks in Algol, they can share the same storage locations.? This solves the
efficiency problem: Since only one of the variants can exist at a time, the compiler need set
aside storage only for the largest variant. This is illustrated in Figure 5.6. In this case, the
inAir variant requires the most space.

Variant records also solve the security problem that we discussed. Since the altitude
field has meaning only when the plane’s status is inAir, the compiler can generate code to
check that the tag field has the correct value before permitting a field reference.

Unfortunately, variant records introduce a loophole into Pascal’s type system. Pascal
does not require the programmer to initialize the fields of a variant after changing the value
of the tag field.* The values found in these locations will be whatever was left there from
the previous variant and may be of a different type. This lack of transparency has actually

3 The analogy with blocks extends further, since variant parts can contain variant parts. That is, variant parts,
like blocks, can be nested.

4 This is in reality an uninitialized storage problem. Pascal, like most block-structured languages, does not
require variables to be initialized when their scope is entered. Access to uninitialized variables may yield the
values left from the block previously using the same area of storage.
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type plane = record
flight: 0 .. 999;
kind: (B727, B737, B747);
case status: (inAir, onGround, atTerminal) of
inAir: (
altitude: 0 .. 100000;
heading: 0 .. 359;
arrival: time;
destination: airport);
onGround: (
location: airport;
runway : runwayNumber) ;
atTerminal: (
parked: airport;
gate: 1 .. 100;
departure: time)

end {plane};

Figure 5.5 Type Declaration for Record with Variants

been used intentionally as a means of getting around the Pascal type system! As Wirth re-
marks, “the variant record became a favorite feature to breach the type system by all pro-
grammers in love with tricks, which usually turn into pitfalls and calamities.”> We can see
that the root cause of the problem is that variant records permit a form of aliasing since the
fields in the different variants are aliases for the same memory locations. In Chapter 7 we
will see the way that Ada has solved this problem.

Pascal’s Data Structures Exhibit Responsible Design

Pascal’s data structures, which derive largely from the work of C. A. R. Hoare, are good ex-
amples of responsible programming language design; recall:

The Responsible Design Principle

Do not ask users what they want; find out what they need.

When Pascal was designed in the late 1960s (and still, in some quarters), programmers be-
lieved that they needed machine-level logical operations (‘and’s, ‘or’s, shifts, etc.) for ma-
nipulating data fields packed into single machine words. It would, of course, have been easy
to include these operations in Pascal, but instead of doing so, Pascal provides a solution to

5 N. Wirth, “Recollections About the Development of Pascal.” SIGPLAN Notices 28, 3 (1993), pp. 333-342.
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flight Figure 5.6 Memory Layout of a Variant Record
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the problem: packing information compactly. A number of Pascal data structures, including
enumeration types, subranges, finite sets and packed arrays and records, together allow a high-
level, application-oriented description of data that permits just as compact representations as
could be achieved in assembly language or a low-level machine-oriented language. (This abil-
ity is also aided by the data types’ adherence to the Preservation of Information Principle.)

Pointer Types Are Secure

You are probably well aware of the value of linked lists, trees, graphs, and other linked data
structures in many applications. These all make use of pointers, the ability to have one mem-
ory location contains the address of another location (or block of locations). For many years
most programming languages did not provide any way for programmers to use pointers; pro-
grammers had to program in assembly language to make effective use of them. The reason
is that the early high-level languages (e.g., FORTRAN and Algol) were designed for scien-
tific programming, and linked structures were not often needed in this application area. Linked
structures were most often needed in systems programming, which was almost always done
in assembly language.

In the late 1960s and early 1970s, many programmers began to realize the advantages
of doing all programming, including systems programming, in higher-level languages. This
led to a demand for a pointer facility to permit machine addresses to be manipulated through
higher-level languages.

Some languages (e.g., PL/I) have satisfied this demand by introducing a single, new
primitive type, called, for example, pointer. Here is an example using this feature (it is not
in a real language):

var p: pointer;
x: integer;
begin
new(p) ;
pl := 5;
X = X + pT;

end
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This program allocates a memory location and puts its address in p, stores 5 in the memory
location whose address is in p (that is the meaning of p 1), and then adds the contents of
this location to x.

Unfortunately, this approach is not compatible with strong typing. Consider this exam-

ple:
var p: pointer;
X: real;
c: char;
begin
new (p) ;
pT := 3.14159;
c :=pl;
end

This stores a real number in the location pointed to by p and then moves the contents of this
location to the character variable c. We have subverted the type system; we have managed
to get a real number into a character variable by going through the (untyped) pointer p. The
problem is that the system has no way of knowing the type of the memory location whose
pointer is in p.

Although programmers do sometimes subvert the type system intentionally, this kind of
error usually happens accidently. In programs that do a lot of pointer manipulation, it is not
unusual for a programmer to think that a pointer points to something other than what it ac-
tually points to. This is the reason that Pascal provides fyped pointers (also called pointer
binding); these allow the compiler to enforce strong typing even when pointers are used. In
Pascal a pointer is the address of an object of a particular type. Thus, there is not one pointer
type but a constructor for creating many pointer types. This is written

1 (type name)

This is the type of all pointers to things of type (type name). For instance, our previous ex-
ample would be written this way in Pascal:

var p: Treal;
x: real;
c: char;
begin
new(p) ;
plT := 3.14159;
c :=pfl; {Illegal!}
end

The assignment to c is now illegal because (1) the type of p is pointer to real, (2) thus p 1
is the name of a real variable. (3) Since it violates strong typing to assign a real variable to
a character variable, (4) it is thus illegal to assign p 1 to c. Typed pointers eliminate the
possibility of many of the bugs that plague programs in both assembly languages and high-
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level languages with untyped pointers. Thus Pascal pointer types obey the Impossible Error
Principle, since certain runtime errors have been made impossible.

The base type of a pointer type can be any other type, including records and arrays. This
means that the pointer following operator (i.., ‘ 1) can form a part of an access path along
with array and record selectors. For example, if we have declared

var p: f{plane;
then we can access the first character of the airport at which the plane is parked by
pT .parked[1]

The elements of records and arrays can be pointers, so almost any combination of pointer
followers, array selectors, and record selectors can occur in an access path.

Exercise 5-15: Write an expression that returns the hrs field of the departure time of
the plane recorded pointed to by p.

Type Equivalence Was Not Clearly Specified

The Revised Pascal Report states that an expression can be assigned to a variable if the ex-
pression and variable have “identical type.” Unfortunately, the report does not specify what
it means for two types to be identical, and different implementers have interpreted this phrase
in different ways. Although the ISO Pascal Standard clears up this ambiguity, it is instruc-
tive to consider the possible interpretations.

One such interpretation is called structural equivalence, because two types are consid-
ered equivalent if they have the same structure. Consider these two variable declarations.

var x: record id: integer; weight: real end;
y: record id: integer; weight: real end;

Is the assignment x := y legal? The Structural Equivalence Rule says “yes” since the
types associated with the two variables have the same structure (i.e., the same description).
Next, consider these declarations:

type ©person record id: integer; weight: real end;

car = record id: integer; weight: real end;
var X: person;
y: car;
The Structural Equivalence Rule would still allow x : = y since person and car are just

two different names for what amounts to the same type. Structural equivalence can be de-
fined as follows: Two objects are considered to have the same type if the structural de-
scriptions of their types are the same (i.e., word for word).

This last example suggests the problem with structural equivalence: If programmers de-
clare two types, called person and car, then they probably intend them to represent dif-
ferent things, and it probably does not make any sense to assign one to the other. The fact
that they happen to be defined by the same record structure may be a coincidence. This leads
to another rule for type equivalence, called name equivalence. The Name Equivalence Rule
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says that two objects have the same type if the names of their types are the same. Therefore,
in the last example, x := y is illegal since the type of x is person and the type of y is
car, and these are two different names. What about the previous example?

var x: record id: integer; weight: real end;
y: record id: integer; weight: real end;

Different versions of the Name Equivalence Rule differ on whether x and y have the same
type or not. One common interpretation says that they have different types since the com-
piler makes up different names for these anonymous types; it is as though the program were

type T00029 record id: integer; weight: real end;

T00030 = record id: integer; weight: real end;
var x: T00029;
y: T00030;

Name equivalence has some problems of its own. Consider this example:

type age = 0 .. 150;
var n: integer;
a: age;
Is the assignment n := a legal? Pure name equivalence says “no” since n and a have dif-

ferent type names (namely, integer and age). In this case the Revised Pascal Report ex-
plicitly allows this assignment since it says that two objects are considered to have the same
type if the type of one is a subrange of the type of the other. This is an exception to the gen-
eral Name Equivalence Rule and the programmer must remember this exception.

Which is better, structural equivalence or name equivalence? There has been a lot of de-
bate on this among programming language designers. The general consensus seems to be
that name equivalence is better. There are two reasons:

1. Name equivalence is generally safer since it is more restrictive. It is presumed that
if programmers declare the type twice, then they probably have a reason for doing it—the
two types probably represent different things. Therefore, considering these types different
protects the security of the program (it prevents the programmer from doing something mean-
ingless).

2. Name equivalence is simpler to implement; the compiler has to compare only the
character strings representing the names of the types. For structural equivalence, it is neces-
sary to write a recursive function that compares the data structures representing the types of
the two objects. This also slows down the compiler.

It is for reasons such as these that the ISO Pascal Standard specifies that name equivalence
be used, although it deviates from pure name equivalence in several ways. We will see in
Chapter 7 that Ada has also adopted a modified form of name equivalence that attempts to
provide the security of name equivalence with the flexibility of structural equivalence.

B Exercise 5-16*: Can you think of any circumstances under which the Structural Equiv-
alence Rule is preferable? Suppose you have a function that returned the sum of the ele-
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mentsof al .. 100 array of reals. Wouldn’t it be convenient if this function could
be used on any such array type, no matter what it is called? Discuss.

5.4 DESIGN: NAME STRUCTURES

There Are Six Name-Binding Mechanisms

Pascal provides six kinds of primitive name structures, or methods of binding names to their
meanings:

. Constant bindings

. Type bindings

. Variable bindings

. Procedure and function bindings
. Implicit enumeration bindings

. Label bindings

AUV A W=

The fifth of these we discussed in Section 5.3, where we discussed enumeration types. There
is little to say about label bindings, beyond the fact that all statement labels must be listed
in the declaration part of the procedure containing the statement they label. The other bind-
ing mechanisms are discussed in this section.

Constants Aid Readability and Maintainability

Pascal includes the ability to name constants of discrete types (integers, enumerations, and
characters). Constant declarations are introduced by the word const and have the syntax

(name) = (constant);

What is the importance of constant declarations?

Consider a large program that manipulates arrays. In such a program, there will nor-
mally be many dependencies between the dimensions of these arrays and other parts of the
program. For example, if the arrays have dimensions [1..100], then there will normally
be for-loops with bounds 1 to 100 or 100 downto 1. Further, there may be other ar-
rays that have dimensions [1..100], [0..99], and so forth, in order to be compatible
with the first array. All of these interdependencies are implicit, although proper documenta-
tion can help to make them explicit.

Next, suppose that in the normal process of maintaining this program it is decided that
the size of one of these arrays should be changed to [1..150] (say, to accommodate larger
data sets). This will imply that the dimensions of some of the other arrays also be changed
and that the limits on some of the for-loops be changed. The programmer will have to find
all numbers that implicitly depend on the changed dimensions and make appropriate changes
to these numbers. It is not as simple as using an editor to change all 100’s to ‘150’s since
some ‘100’s depend on the array’s dimensions and some don’t. Rather, each instance of
‘100’ must be considered individually. This is a very error-prone and tedious process.
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Pascal’s constant declarations solve many of these problems since they allow implicit
dependencies to be made explicit. They do this through the application of the Abstraction
Principle since all the dependent constants are abstracted out of the program and are given
a name. For example, given the declaration

const MaxData = 100;

the programmer can use the named constant MaxData in all declarations, for-loops, and
so on, that depend on this parameter. (Instances of ‘100’ that do not depend on it would pre-
sumably have their own names.) Changing this parameter to 150 is then simple since only the
constant declaration has to be changed; all other dependent changes are made automatically.

We must mention important limitations of Pascal’s constant declarations: The constant
cannot be described by an expression, and expressions cannot be used in variable and type
declarations. For example, suppose that a dependent array A had dimensions [0..99]; we
should declare this as

var A: array [0 .. MaxData - 1] of real;

Unfortunately, this is not allowed since Pascal does not permit expressions (even constant
expressions like MaxData - 1) to be used as array dimensions or subrange bounds. The
best we can do is to declare two constants and document the dependency:

const MaxData = 100;
MaxDataMinusl = 99; { = MaxData - 1 }

var A: array [0 .. MaxDataMinusl] of real;

Some newer languages (e.g., Ada, Chapter 7) have eliminated this restriction.

The Constructor Is a Simplification of Algol’s

There are two major name structure constructors in Pascal. One is the record-type construc-
tor, which is discussed in Section 5.3. The other constructor is the procedure (or function),
which is the major scope defining construct.

A procedure declaration has the form

procedure {(name) ((formals)) ;
{(declarations)

begin
(statements)

end;

This is very similar to the Algol procedure declaration:
procedure (name) ({formals)); (formal specifications)
begin

(declarations)

(statements)
end

We can see that the main difference is that the parts have been rearranged a little.
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The scope rules of Algol and Pascal bindings are essentially the same. The scope of the
(declarations) is the entire block, including all the (declarations) and the (statements). The
scope of the (formals) includes both the local (declarations) and the (statements) in the body
of the procedure.

The ISO Pascal Standard places an additional restriction on the order of declarations to
permit one-pass compilation. The scope of each of the (declarations) includes that declara-
tion, all of the following declarations, and the (statements). This means that names must be
bound before (textually) they are used, whereas in Algol and Revised Report Pascal this is
not the case. This restriction simplifies the compiler since it means that declarations can be
processed in a single pass across the source. However, there are two problems.

First, structured programming methods encourage programmers to structure their pro-
grams in a top-down order. That is, the uppermost procedures are defined first, then the lower
level ones that they call, and then the lower level ones that these call, and so on. This is ex-
actly the opposite order from that required by ISO Standard Pascal, since it means that every
procedure will be called before (textually) it is defined.

The second problem with this restriction is that mutually recursive procedures cannot
be defined before they are called. For example, suppose that P calls Q and Q calls P. The
following declarations are incorrect since Q is used before it’s declared:

pProcedure P ( ... );
begin

end;
pProcedure Q ( ... );
begin

end;

To solve this problem, ISO Pascal provides a forward declaration, which gives the compiler
the information it needs before the procedure is actually declared. For example,

procedure Q ( ... ); forward;
procedure P ( ... );
begin
Q );
end;

procedure Q;
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begin

end;

Most Pascal dialects (including the ISO Standard) require the declarations in a procedure
or program to be in a particular order: labels, constants, types, variables, and subprograms:

procedure (name) ({(formals));
(label declarations)
{const declarations)
(type declarations)
(var declarations)
(procedure and function declarations)
begin
(statements)
end

This is not an unreasonable order for declarations to be in. As we can see in Figure 5.1, con-
stant declarations are often used in succeeding type declarations; type declarations are used in
succeeding variable declarations; and the variables are used in the subprograms. Requiring this
order can be inconvenient in large programs, however, since it prevents the user from group-
ing together related constant, type, variable, and subprogram declarations. This problem is
solved by the encapsulation mechanisms provided in fourth-generation languages (Chapter 7).

Pascal Eliminates the Block

Recall the distinction in Algol-60 between a block and a compound statement: A block con-
tains local declarations and statements, whereas a compound statement contains only state-
ments. Blocks facilitate the sharing of storage since arrays declared in disjoint blocks can oc-
cupy the same memory locations. This is not possible in Pascal since Pascal provides compound
statements but no blocks. In Pascal, storage can be shared only between disjoint procedures.
Although this simplifies Pascal’s name structures, it complicates efficient use of memory.

B Exercise 5-17: Recall the example on p. 112 of storage sharing in Algol-60. How would
you program this in Pascal so that the arrays x and m share storage?

5.5 DESIGN: CONTROL STRUCTURES

Control Structures Reflect Structured Programming ldeas

Pascal has more control structures than Algol-60, although they are simpler than Algol-60’s.
As in Algol-60, the control-structure constructors route control among the basic computa-
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tional primitives of the language: those operations that fetch, store, and operate on the val-
ues of variables. In addition, Pascal provides simple input-output statements (missing from
Algol-60), since it was designed for teaching.

In Chapter 3 (Section 3.5), we described how Algol’s ability to nest control structures
led to the ideas of structured programming. Pascal continues this development by providing
several more structured control structures. Each of these is characterized by having one en-
try point from the previous statement and one exit point to the following statement. This is
exemplified by Pascal’s if-then-else statement, which is exactly like Algol’s. This single
entry—single exit property simplifies programs by satisfying the Structure Principle: The sta-
tic structure of the program corresponds in a simple way to its dynamic structure.

Pascal does have a goto-statement, although the richness of the other control structures
means it is rarely needed. As in Algol, nonlocal transfers are permitted. At the time Pascal was
designed, Wirth thought that the absence of a goto would discourage too many people from
using the language; he did eliminate the goto from the next language he designed, Modula.

Pascal, like almost all languages designed since Algol, has fully recursive procedures.

The for-Loop Is Austere

Recall the complexity of Algol’s for-loop; it included stepping elements, while-conditions,
and lists of arbitrary values. Furthermore, the expressions in the bounds were evaluated on
every iteration, giving them the ability to change from one iteration to the next. This is ex-
actly the kind of baroque, inefficient control structure that Pascal tries to avoid. As we will
see, Pascal’s for-loop is even simpler than FORTRAN’s DO-loop!

The syntax for a Pascal for-loop is

to

for (name) := (expression) { downto

} (expression) do (statement)

The loop can step up by + 1 increments or down by — 1 increments, as indicated by the
words to and downto; step sizes other than 1 are not allowed. Critics have maintained that
this is carrying things too far because nonunit step sizes are very useful and do not add much
to the complexity of the language. This is one case where Pascal may have overreacted to
the complexity of the second-generation languages.

Pascal also specifies that the bounds of the loop are computed once, at loop entry, rather
than on every iteration as is done in Algol. The result is that a Pascal for-loop always exe-
cutes a definite number of times (provided, of course, the programmer does not jump out of
it with a goto). For this reason the Pascal for-loop is both more efficient and easier to un-
derstand. It is an example of a definite iterator, that is, a structure that iterates a definite (pre-
dictable) number of times. We will see below that Pascal also provides indefinite iterators.

B Exercise 5-18: Write a Pascal for-loop to sum into S the elements of

var A: array [min .. max] of real;

# Exercise 5-19: How would you write a Pascal for-loop to sum the even-indexed ele-
ments of the array declared:

var A: array [(1 .. 100] of integer;
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Exercise 5-20*: Discuss Pascal’s for-loop. Is it too simple? Should a variable step size
be provided? Suggest a syntax and justify its inclusion. Should it be even simpler (e.g.,
not allow downto)? Justify this choice. Should it be eliminated altogether since for-loops
can be implemented using the indefinite iterators?

Exercise 5-21*: The ISO Pascal Standard requires the controlled variable of a for-
loop to be a local variable of the procedure or function containing the loop. Why

have the language designers imposed this restriction? Discuss the trade-offs pro and
con.

Leading- and Trailing-Decision Indefinite Iterators

Pascal provides two constructs for indefinite iteration, that is, for looping when the exact
number of iterations is not known at loop entry. In these cases, a condition that’s tested on
each iteration determines whether or not the loop has completed.

In Chapter 2 (Section 2.3), we discussed two places in the loop where the decision can
be placed—the beginning and the end of the loop. These two situations are handled by Pas-
cal’s while-loop and repeat-loop, respectively:

while (condition) do (statement)
repeat (statements) until (condition)

The while-loop is an example of a leading-decision iterator and the repeat-loop is an ex-
ample of a trailing-decision iterator.

Although these two constructs handle most loops, there are other places the decision
can be put. For example, a mid-decision iterator places the decision in the middle of the
loop. For these Pascal must use a goto and an impossible termination condition (while

true):

while true do
begin
... first half of loop body
if (done) then goto 99;
second half of loop body
end;
99:

Some newer languages (e.g., Ada, Chapter 8) have provided a mid-decision indefinite iter-

ator.

Exercise 5-22: Suggesta situation in which a mid-decision loop would be useful. Hint:
Recall the example of an Algol-60 for-while loop in Section 3.5.

Exercise 5-23*: Do you think Pascal should include a mid-decision loop? Discuss the

relative merits of a goto and a mid-decision loop. Can the goto be eliminated if a mid-

decision loop is included? Should it be eliminated? Can all of the indefinite iterators be

handled by one loop statement? Suggest a possible syntax.
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The case-Statement Is an Important Contribution

It is quite common in programming (and problem solving in general) to break a problem
down into two or more subproblems. That is, a problem is often divided into several cases
that are handled differently. For example, if we are processing plane records (Section 5.3),
then we may want to divide them into three cases, depending on whether their status is
inAir, onGround, or atTerminal. This is handled by the Pascal case-statement.

Other languages also have mechanisms for handling cases; for example, FORTRAN pro-
vides the computed GOTO. If we want to do one group of statements (S;) if I = 1, another
(S23) if I = 2 or 3, and a third (S,) if T = 4, then we can write

GOTO (100, 250, 250, 400), I

100 R
GOTO 500
250 .. Sos
GOTO 500
400 ce. Sy oL,
500 ... restof program

This is quite efficient since the computed GOTO is compiled as a jump table; but it is not
very readable since there is no way to tell from the GOTO where the labels are. They could
be anywhere in the subprogram so the flow of control is not obvious. This violates the Struc-
ture Principle.

Several programming languages have attempted to provide more structured alternates to
FORTRAN’s computed GOTO and Algol’s switch. These were patterned on the if-then-else,
which breaks the problem into two cases depending on the condition. These constructs are
called case-statements and usually look something like the following:

case (expression) of
(statement),
(statement),

(statement)
end case;

The meaning is as follows: If the value of (expression) is 1, the first (statement) is executed;
if it is 2, the second is executed, and so forth. Like the if-then-else, the case-statement has
a single entry from the preceding statement and a single exit to the following statement.

There are several problems with this construct. First, if there are many cases (and case-
statements with 50 or 100 cases are not unusual), then it may be difficult for the reader to
tell which statements correspond to which cases. Commenting on the statements with the
case numbers helps, but there is still the problem of incorrect comments: programmers of-
ten change the code without bothering to change the comments.

Another problem is that this construct works only for cases that are indexed by inte-
gers beginning with 1. This kind of case-statement will not handle other data types, such as
(inAir, onGround, atTerminal), as the basis for the case breakdown.
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Angthgt ' oblem is that it is difficult to handle two or more cases with the same code.

For our previous example, where both cases 2 and 3 were handled by the code S>3, we would
have to write

case I of

begin ... S; ... end,

begin ... Sz3 ... end,

begin ... S;; ... end,

begin ... S; ... end
end case

Notice that we have repeated the statements S,3 for each of the cases 2 and 3. This violates the
Abstraction Principle and makes the program harder to read, harder to write, and harder to
maintain. In particular, since it is not obvious that the code for cases 2 and 3 is the same, one
might fix a bug in one without realizing that it also has to be fixed in the other. We could fac-
tor out the code S,3 into a procedure P and call this procedure from each of cases 2 and 3, but
this approach tends to clutter the program with procedures that are not very meaningful.

A solution to all of these problems can be found in Pascal’s labeled case-statement de-
signed by C. A. R. Hoare. Hoare has said that this is the most important of his many con-
tributions to language design.

Like the unlabeled case-statement described above, the labeled case-statement contains
one or more case clauses:

case (expression) of

(case clause);
{case clause);

(case clause)
end

Unlike in the unlabeled case-statement, however, each case clause begins with one or more
constants that label that clause:

(constant), {(constant) , ... : (statement)

This solves the problem of handling cases 2 and 3 with the same code:

case I of

1: begin ... S; ... end;

2, 3: begin ... S;3 ... end;

4: begin ... S; ... end
end

Notice that this is more secure than the unlabeled case-statement; there is no possibil-
ity that the case label is incorrect as there was when they were just comments. The cases can
even be out of order. The programmer can be assured that the case labeled 1 will be exe-
cuted when T is 1. Another way of looking at this is that the labeled case-statement is self-
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documenting; that is, it does not depend on the programmer properly documenting which
case is which. The labeled case-statement illustrates the Labeling Principle.

The Labeling Principle

Avoid arbitrary sequences more than few items long; do not require the user to know
the absolute position of an item in a list. Instead, associate a meaningful label with each
item and allow the items to occur in any order.

The labeled case-statement is also more flexible than the unlabeled case-statement. In
particular, values other than integers can be used to discriminate between the cases. Our
plane example can be written

case NextFlight.status of

inAir: . .. handle plane in air . ..;
onGround: . .. handle plane on runway . ..;
atTerminal: . .. handle parked plane

end

This saves the programmer from the error-prone process of manually mapping plane sta-
tus into integers and provides clear documentation of the case breakdown.

The case-statement is also quite efficient. Since the compiler can determine the type of
the case-selection expression, it knows the possible values that this expression can have. It
can then construct a jump table of the appropriate size for the case-statements. Some com-
pilers go even further and generate either a jump table, a hash table, a binary search of a
sorted table, a sequential search of a linear table, or a series of if-tests, depending on the
number of values, their range, and their clustering.

In summary, the labeled case-statement is just as efficient as the computed GOTO, but
it is higher level, more secure, more readable, and more structured.

B Exercise 5-24: Write a case-statement that assigns to a variable days (of type 28
31) the number of days in the month stored in ThisMonth (of type month).

B Exercise 5-25*: Consider at least three ways of implementing a case-statement (e.g.,
sequential test, jump table, and binary search). Assuming all the cases are equally likely,
derive formulas for the average amount of time to execute a case given each of the im-
plementation methods. State parameters by which a compiler could decide which imple-
mentation to use for any give case-statement.

B Exercise 5-26*: Perform an analysis similar to that in the previous exercise, but com-
pute the average amount of storage required for the case. Suggest ways of trading off
space against time.

Parameters Are Passed by Value or Reference

The Revised Report on Pascal describes two parameter passing modes: pass by value and pass
by reference. Pass by reference replaces the expensive and confusing name parameters of Al-
gol-60 with the simpler mechanism provided by FORTRAN. The purpose of pass by reference
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is to allow a procedure to alter its actual parameters; in other words, reference
parameters are output (or input-output) parameters. The problem with pass by reference in
FORTRAN was that a procedure could alter actuals that it made no sense to alter, such as lit-
eral constants (see Chapter 2, Section 2.3). Pascal solves this problem since the programmer
must specify in the procedure declaration whether a parameter is to be passed by value or ref-
erence. If a parameter is passed by reference, then the Pascal compiler will ensure that the cor-
responding actual is something that it is meaningful to store into, that is, a variable, array ele-
ment, or record field. Therefore, in Pascal, reference parameters obey the Security Principle.

Reference parameters are also efficient since only an address is passed, no matter how
large the corresponding actual is. In contrast, name parameters are expensive since a thunk
(Chapter 3, Section 3.5) must be invoked on each use of the parameter.

Pass by value in Pascal is exactly like pass by value in Algol; a copy of the actual pa-
rameter is made in a variable local to the procedure. This is intended for input parameters
since it prevents modification of the actual. It has the same efficiency problems as Algol’s
pass by value since an array or other large data structure will have to be copied. Unfortu-
nately this leads some programmers to pass by reference parameters that are not intended
for output.

Pass as Constant Was Once Provided

The original Pascal Report did not specify pass by reference and pass by value as the para-
meter passing modes; rather, it specified pass by reference and pass as constant. Constant
parameters are similar to value parameters in that they are intended for inputs, but they have
an efficiency advantage that value parameters do not. We discuss this below.

A parameter passed by constant is considered a constant within the body of the proce-
dure; therefore, it is not legal to use that parameter as the destination of an assignment. It is
also illegal to use it in any other context where it is a destination, such as an actual para-
meter passed by reference. Thus, the compiler protects the security of constant parameters.

Since the compiler prevents a constant parameter from being altered, the compiler can
either pass the value of the actual or pass its address, whichever is more efficient. For ex-
ample, for small values, such as integers, characters, and elements of enumeration types, the
compiler can copy the value of the actual parameter into local storage, as it would for pass
by value. For large values, such as arrays and large records, the compiler can just pass the
address of the actual. This saves the time and extra space required for a copy of the para-
meter with pass by value. There is no danger of the actual being inadvertently modified be-
cause the compiler prevents assignments to constant parameters. (In Chapter 8, Section 8.1,
we analyze quantitatively the trade-offs between passing addresses or copies of parameters.)

We can see that constant parameters have the security advantages of value parameters
and the efficiency advantages of reference parameters. So why were they eliminated from
Pascal and replaced with value parameters in the Revised Report (and the ISO Standard)?
One possibility is that the security is not airtight. Pascal permits limited forms of aliasing.
For example, the same variable may be visible in two ways, as a nonlocal and as a parame-
ter. Consider this program fragment

type vector = array [1 .. 100] of real;
var A: vector;
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procedure P (x: vector);

begin
writeln (x[1]);
A[l] := 0;
writeln (x[1])
end;
begin
P(A)
end.

Notice that within the procedure P the same area of storage has two names: x and A. Since
x is a constant parameter, the compiler may choose to pass the address of A to P. Then, since
the assignment to A alters the value of the array, the two references to x [1] may produce
different values even though there is no assignment to x between them. The illusion is im-
perfect; the mirrors can be seen.

Unfortunately, the alternative chosen—providing only value and reference parameters—
encourages programmers to pass things by reference for the sake of efficiency, even though
they have no intention of altering the actual from the procedure. This undermines the secu-
rity of their programs and misleads the reader.

The problem is that two orthogonal issues are being confused: (1) the issue of whether
a parameter is to be used for input or output and (2) the issue of whether to copy its value
or pass the address of its value. Newer languages such as Ada (Chapter 8) have separated
these decisions better by returning to a mode similar to constant parameters.

B Exercise 5-27: Write a Pascal fragment that uses parameters, but not nonlocal vari-
ables, to illustrate the security loophole in parameters passed as constants.

Procedural Parameters Are a Security Loophole

Pascal allows procedural and functional parameters, that is, procedures and functions passed
as arguments to other procedures and functions; this restores some of the flexibility lost by
omitting name parameters. For example, suppose we need to define the function difsqg
(£, x), which computes f{x?) — f{—x?) for any real function f and real number x. Thus,

difsq (sin, 6) = sin (6%) — sin (—6?)
In the Revised Report Pascal dialect, di fsq would be defined:

procedure difsqg (function f: real; x: real): real;
begin
difsqg := f(x*x) - f(-x*x)
end;

This seems straightforward enough.

Unfortunately, this method of specifying a functional parameter introduces a serious se-
curity loophole into Pascal. Notice that the procedure header for di fsq only specifies that
f is a real function; it says nothing about the number or types of the parameters of f. This
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makes it almost impossible for the compiler to determine if a particular call of difsq is le-
gal or not (recall that di fsq could itself be passed to another procedure).

For this reason the ISO Pascal Standard requires the programmer to specify the argu-
ments of a formal procedure parameter, for example,

procedure disfsqg (function f(y: real): real; x: real): real;
begin .... end;

This allows the compiler to do complete type checking, thereby preserving Pascal’s strong
typing. The correct implementation of di fsq is shown in Figure 5.7.

There are several costs associated with the solution just discussed. One obvious cost is
increased language complexity. A more subtle cost is the implication that procedures are
first-class citizens. Since this solution allows procedure types to be used in formal parame-
ter specifications, the user could also reasonably expect to use them in variable declarations.
If this were allowed, then the language would have to define the meaning of procedure vari-
ables, arrays of procedures, procedure-valued functions, files of procedures, and so on. There
are many complex language-design and implementation issues involved in these concepts
(some of which are discussed in later chapters). On the other hand, if the language did not
permit procedure types to be used in variable declarations, then procedure types would not
be first-class citizens and the user would have to learn more exceptions. This also adds to
the complexity of the language.

# Exercise 5-28: Discuss the ISO Standard’s way of providing secure procedural and

functional parameters in Pascal. Defend the ISO solution to this problem or propose and
defend your own solution.

var theta, phi: real;

function sin (x: real): real;
begin .... end;

function exp (x: real): real;
begin .... end;

function difsg (function f (y: real): real; x: real): real;
begin
difsq := f(x*x) - f(-x*x)
end;

begin
readln (theta); readln (phi);
writeln (difsqg (sin, theta));
writeln (difsqg (exp, phi))
end.

Figure 5.7 Example of Function Passed as Parameter
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5.6 EVALUATION AND EPILOG

Pascal Has Lived Up to Its Goals

Recall that Pascal’s primary goal was to be a good language for teaching programming. This
led to subsidiary goals of reliability, simplicity, and efficiency. Even in the face of some of
the problems we have discussed, Pascal has been very successful in these areas. Many uni-
versities and colleges now teach Pascal as a first programming language. This use has been
encouraged by the good Pascal implementations that exist on almost all computers, includ-
ing microcomputers. The quality of these implementations must in part be attributed to the
- small size and careful design of the language. Wirth (1993) observes, “the principle to in-
clude features that were well understood, in particular by implementors, and to leave out
those that were still untried and unimplemented, proved to be the most successful single
guideline.” The second most important principle was, he says, to publish the language def-
inition after the implementation was complete, thus making it a description of work com-
pleted, not of work planned. In many respects Pascal illustrates the Elegance Principle.
Much of the criticism Pascal has received results from trying to use it for purposes for
which it was not designed. For example, Pascal has been criticized for its lack of a separate
compilation facility, even though such a facility is not especially important in teaching pro-
gramming (the language’s intended application). Indeed, it is to Pascal’s credit that it has
been so successfully applied in so many areas for which it was not intended.

Pascal Has Been Extended

Although Pascal was intended as a teaching language, many programmers have found that
it is also suitable for “real” programming including systems implementation. Its strong typ-
ing simplifies debugging and helps catch latent errors in production programs; its rich set of
efficient, high-level data types simplifies many nonnumerical programs; and its small size
means that a programmer can acquire mastery of the language in a moderate amount of time.

These qualities have made Pascal an attractive vehicle for programming language re-
search. Pascal has been extended for concurrent programming, to support verification, and
for operating systems writing. Like Algol before it, Pascal has become a basis for almost all
new language designs; most new languages are “Pascal-like.” This includes the language
Ada, which is the topic of Chapters 7 and 8. Other offspring include Concurrent Pascal,
Mesa, and Euclid. Wirth himself has designed a successor to Pascal, called Modula-2, which
attempts to correct some of Pascal’s deficiencies and to be a practical tool for systems pro-
gramming, and more recently he has designed Oberon.

Subsets of PL/I Were Designed for Systems Implementation

In the Algol lineage, we have seen how the third-generation language Pascal was motivated
by an emphasis on simplicity and efficiency, which was a reaction to the overgenerality and
complexity of second-generation languages, such as Algol-68. In other language families
there was a similar reaction to the second generation, which did not always lead to third-
generation languages. For example, attempts to apply PL/I to systems programming were
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hampered by its inefficiency and the practical unpredictability of the costs of some constructs
(violations of the Localized Cost Principle). Therefore, language designers developed a num-
ber of subsets of PL/I, such as PL/S and XPL, intended for systems implementation. Since
in many cases these were intended for systems implementation on specific computers, there
was not much concern for machine independence, and many machine-dependent constructs
were included for the sake of efficiency. (We can compare the case of FORTRAN II, which
had many constructs specific to the IBM 704.) The extreme case of these “MOHOLSs”
(machine-oriented higher-order languages) were the various “structured assemblers,” which
provided direct access to a computer’s instruction set, but allowed the use of high-level lan-
guage syntax, including infix operators.

BCPL Was Designed for the Implementation of CPL

A similar evolutionary development can be seen in another language family. In the early
1960s teams at Cambridge and London Universities developed a semantically sophisticated
but very complex language called CPL—explained as “Cambridge Plus London” or “Com-
bined Programming Language.” The latter acronym hints at its complexity, for CPL exhibits
the full Baroque flowering of the second generation. Like Algol 60, CPL posed implemen-
tation challenges for its designers, and so they wanted to implement it in the best program-
ming language: CPL. (This is not unusual—Pascal was implemented in Pascal; it was ex-
pected of any decent general purpose language that it would be the best vehicle for
implementing its own compiler.) To simplify this process Martin Richards designed (1967)
a subset of CPL, called BCPL for “Basic CPL,” which included just those features essential
for systems implementation. Ultimately, the CPL project died away, but BCPL became a
moderately popular systems implementation language in the early 1970s.

B Was Designed for the Implementation of Unix

In particular BCPL was popular at Bell Labs when the earliest versions of Unix (for an 8K
PDP-7!) were being developed. Since the Unix project needed a systems implementation lan-
guage, in 1969-1970 Ken Thompson designed a language called “B”; “it is BCPL squeezed
into 8K bytes of memory and filtered through Thompson’s brain.”® At first there was little
concern for portability, and the language was very close to the machine. In particular, like
BCPL and many other systems implementation languages, B was typeless; that is, it had a
single data type corresponding to a word of PDP-7 memory. This is, of course, the extreme
of weak typing, and is more typical of an assembly language than of even first-generation
languages, which typically have several data types and some notion of type checking. Many
other language design decisions were dictated by the limited memory available to compile
B on the PDP-7.

6 The quotations and historical information on C are from Dennis M. Ritchie, “The Development of the C
Language” [SIGPLAN Notices 28, 3 (March 1993), pp. 201-208].
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C Evolved Gradually from B

With the arrival of a PDP-11 in 1970, the Unix team became aware of problems with B’s
addressing scheme, which was incompatible with memory addressing on the PDP-11. There-
fore, in 1971 Dennis M. Ritchie began extending B to include rudimentary data types (for
purposes of memory allocation and addressing, not type checking), inspired in many respects
by Algol-68. Eventually he called this language “C,” as the successor of “B”; its evolution
was mostly complete by 1973, when it was used to rewrite the kernel of the Unix operating
system.

Some additional third-generation features, such as union and enumeration types, were
added in the late 1970s, but attempts to port Unix to other computers accented the portabil-
ity and security problems of weak typing. Therefore a more restricted type system was de-
signed, but it was not enforced by most compilers; instead programmers had to rely on a
separate type-checker (called 1int). In a way, the evolution of C recapitulates the history
of programming languages, with its shift of emphasis from efficiency to portability and se-
curity.

Ritchie acknowledges that the language contains many infelicities, some of which result
from attempting to maintain upward compatibility from B and BCPL; others are “historical
accidents or mistakes.” The first published description (The C Programming Language by
Kernighan and Ritchie) was published in 1978, but it was not a language definition per se,
since it was vague about many issues, and it was not consistent with the “reference com-
piler” (pcc, the portable C compiler). Many of these problems were solved by the devel-
opment of an ANSI standard C, which began in 1983; it was approved in 1989.

During the late 1970s and early 1980s, use of Unix spread outside of AT&T, mostly
within the university and industrial research communities, and C spread with it. By the late
1980s it had become a popular language for programming personal computers (for which,
again, efficiency was often critical). It is also used as an output language for compilers of
other languages (much as a structured assembler might be used), and has been the basis for
other languages, such as “C++” (see Section 12.5).

C Mixes Characteristics of Three Generations

As a consequence of its history, C combines characteristics of several language generations.
First, it has some third-generation features such as hierarchical data structures. Also it bor-
rowed many ideas from second-generation languages, such as Algol-68, CPL, and PL/I. For
example, its low-level model of arrays and pointers complicates or precludes optimization
of array operations on some computers (in effect, C’s storage model is lower level than the
machine’s). In some ways, C even returns to the first generation. For example, it does not
permit nested procedures or environments. Thus it has poor support for modular program-
ming (a key issue addressed by fourth-generation languages; see Chapter 7). It also resur-
rected some first-generation syntactic conventions, such as using ‘=" for assignment and re-
quiring declarations to start with a keyword.

Perhaps we should not be surprised at the reappearance of first-generation characteris-
tics in C; some, at least, were a direct consequence of its orientation to a machine, the 8K
PDP-7, of comparable power to the machines for which the first-generation languages were
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designed. Thus we may say that C was motivated by concerns similar to those that moti-
vated first-generation language designers.

Ritchie remarks that “C is quirky, flawed, and an enormous success.” Aside from rid-
ing on the back of Unix popularity, he suggests that the success of C can be attributed to its
simplicity, efficiency, portability, closeness to the machine, and its evolution in an environ-
ment in which it was used to write practical programs.

Characteristics of Third-Generation Programming Languages

The third-generation languages, as typified by Pascal, show an emphasis on simplicity and
efficiency, and more generally a reaction to the excesses of the second generation. We con-
sider individually the domains of data, name, and control structure.”

The data structures of the third generation show a shift of emphasis from the machine
to the application. This is clearest in the provision of user-defined data types, which permit
programmers to create the data types needed for their applications. It is also exemplified by
application-oriented type constructors, such as sets, subranges, and enumeration types. The
third generation is also characterized by the ability to nest data structures to any depth, that
is, by the ability to organize data hierarchically.

The name structures of the third generation are generally some simplification of Algol-
60 block structure. On the other hand, third-generation languages typically have new bind-
ing and scope-defining constructs, often associated with data type constructors, such as
records and enumeration types.

Third-generation control structures are simplified, efficient versions of those found in
the second generation. This is especially apparent in Pascal’s for-loop, but it can also be
seen in the rejection of name parameters and similar delayed-evaluation mechanisms. The
third generation also has new control structures that are more application oriented, such as
the case-statement.

In summary, the third generation combines practical engineering principles with the tech-
nical achievements of the second generation. The result, especially in the case of Pascal, is
a simple, efficient, secure programming tool for many applications.

1#*, Read about Euler (Commun. ACM 9, 1-2, 1966), Algol W (Commun. ACM 9, 6, 1966),
and PL360 (J. ACM 15, 1, 1968). Trace the development of Wirth and Hoare’s ideas from
Algol-60, through Euler, Algol W, and PL360, to Pascal.

2#*_ Critique the language, Modula-2 (Wirth, Programming in Modula-2, 1982), which Wirth
designed as a successor to Pascal.

3#%*, Study and evaluate Oberon, Wirth’s successor to Modula-2 (Wirth, Soft. Prac. Exper. 18,
7, 1988, pp. 671-690).

4**, Study the Proceedings of the 1969 and 1971 symposia on extensible languages (SIGPLAN
Notices 4, 8, 1969 and SIGPLAN Notices 6, 12, 1971). Write a report surveying the entire
field at this time, or pick out one or more particular languages and write a detailed critique
of them.

7 The syntactic structures are essentially those of the second generation.
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6**

10.

11.
12.
13.

14.

EXERCISES 209

Read, summarize, and critique Wirth’s article, “On the Design of Programming Languages”
(Information Processing 74, North-Holland, 1975).

- Pascal does not have a formatted input-output system. Decide whether formatted input-

output should be part of Pascal or be provided by a procedure library, and design a corre-
sponding input-output system.

A deficiency of Pascal’s input-output system is that it does not allow input-output of val-
ues that are elements of enumeration types. Identify the problem with input-output of these
values and design an input-output system that accommodates enumerations.

Pascal does not allow constants to be defined by an expression, even if the value of that
expression is constant (see Section 5.4). Discuss this restriction thoroughly. What would
be the benefits of allowing expressions in constant declarations? What restrictions, if any,
should be placed on the allowable expressions? Are there other changes that could be made
to the language to mitigate the absence of expressions in constant declarations?

All enumerations in Pascal are ordered. For example, with the enumeration declaration
type sex = (male, female);

we have male < female and succ(male) = female. These relationships really do not make
any sense and the fact that Pascal permits them violates the Security Principle. One solu-
tion would be to add to Pascal another kind of enumeration type, an unordered enumera-
tion. Discuss the trade-offs involved in deciding whether to add this feature to Pascal.

Suppose S is a set variable. If we wanted to perform some operation on each element of
S, we would like to be able to write a for-loop like this:

for x in S do

Unfortunately, this is not legal Pascal. Instead we have to write a loop over all the ele-
ments of the base type of S and, for each element, test whether it is in S and perform the
operation if it is. That is,

for x := least to greatest do
if x in S then
What set operations could be added to Pascal to solve this problem?
Derive the addressing equation for Pascal arrays.
Propose a solution to the security problem posed by variant records.

Show how a Pascal program would have to be structured so that two arrays share the same
memory locations.

To write a case-statement that does one thing for digits and another for letters, we would
have to write something like this:

e i i s
R

/0/[ /1/, /2// 13/, /4/,
'57, ‘67, 7, ‘87, '9’: ...do digit case...

1o 1 I~ r 3 rar
a’, b, c’, d, e’,
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15.

16%*.

17%%*,

18%%*,

Ifl, lgl, Ihl, Iil, ljl,
,k,, Ill' lml, lnl’ IOI'
Ipl, lql, lrI, ISI, Itl,
ra’ v rw’ ' Iy-l
’ ’ ’ ’ ’
'z’ ...do letter case...

end

Develop an extension to Pascal that avoids the error-prone and tedious process of listing
all the digits and letters.

Some Pascal dialects permit an otherwise clause on case-statements. This clause is exe-
cuted if the value of the case selector is not among the case labels. Write a BNF (or ex-
tended BNF) description of a case-statement with an otherwise clause.

Read about the C language and evaluate it according to the principles discussed in this
book.

Read about CPL (D. W. Barron et al., “The Main Features of CPL.” Computer J. 6, 2,
1963) and write a detailed evaluation of its features.

Read and critique the criticisms and defenses of Pascal by Habermann (Acta Inform. 3,
1973, pp. 47-57), Lecarme and Desjardins (Acta Inform. 4, 1975, pp. 231-243), Welsh et
al. (Soft. Prac. Exper. 7, 1977, pp. 685-696), and Kernighan (“Why Pascal Is Not My Fa-
vorite Programming Language.” AT&T Bell Labs. Comp. Sci. Tech. Rep. 100, 1981).




