3.1 HISTORY AND MOTIVATION

GENERALITY AND
HIERARCHY: ALGOL-60

An International Language Was Needed

Already in the mid-1950s it was becoming apparent to some computer scientists that a sin-
gle, universal, machine-independent programming language would be valuable. The prob-
lem, of course, was portability; since each machine had its own instruction sets, assemblers,
and pseudo-code interpreters, it was very difficult to transport programs from one machine
to another. As early as 1955,! GAMM, a European association for applied mathematics and
mechanics, had set up a committee to study the development of such a language. The prob-
lem was serious enough that at a conference in Los Angeles in May 1957, representatives
of ACM (The Association for Computing Machinery) and three manufacturer’s users’ groups
suggested that ACM form a committee to study and recommend action for the creation of a
universal programming language. In June ACM appointed representatives of the computer
industry, users, universities, and the federal government to such a committee. In October
GAMM proposed to ACM that a joint effort be undertaken, to which ACM agreed. In this
proposal GAMM made several points; for example, that no existing language was so popu-
lar that it should be chosen as the standard and that another “nonideal” language would not
solve the problem of the proliferation of languages. GAMM also stressed that the passing of
time aggravated the problem since each month brought more programming languages and
more programs written in those languages. A joint meeting of four members of each of the
ACM and GAMM subcommittees was scheduled for May and June 1958 in Zurich.

The Algol-58 Language Was Developed

The language now known as Algol-58 was designed by the eight representatives who met in
Zurich. The European members brought several years of work on algebraic language design

! Most of the historical information in this section comes from the “History of Programming Languages Con-
ference Proceedings.” SIGPLAN Notices 13, 8 (August 1978).

95

-

96 GENERALITY AND HIERARCHY: ALGOL-60

and the Americans brought their experience in implementing pseudo-codes and other pro-
gramming systems. For example, John Backus was one member of the American group. This
combination of talents proved very productive, and in eight days the language was essen-
tially completed. In December 1958 Perlis and Samelson, writing for the committee, pub-
lished the “Preliminary Report—International Algebraic Language,” in the Communications
~of the ACM. At that time the official name of the new language was IAL, although the
_ acronym Algol (Algorithmic Language) had already been proposed. It is for this reason that

the 1958 document is often known as the “Algol-58 Report.”
It is instructive to see the objectives of the new language as stated in the Algol-58 Report:

- 1. The new language should be as close as possible to standard mathematical notation and
be readable with little further explanation.
II. It should be possible to use it for the description for computing processes in publications.
III. The new language should be mechanically translatable into machine programs.

As our description in this book progresses, you should try to decide how well Algol met
these goals.

Algol-58 created a great stir when it was announced; implementations were begun at
many universities and laboratories. Indeed, many of IBM’s users even suggested that IBM
abandon FORTRAN and throw all of its support behind Algol; IBM, however, decided against
that course. Many dialects of Algol-58 appeared, including NELIAC, the Navy Electronic
Laboratories International Algol Compiler, and JOVIAL, which was widely used by the Air
Force. JOVIAL is an acronym for “Jules’ Own Version of the International Algebraic Lan-
guage,” reflecting the alterations made to IAL (Algol-58) by Jules Schwartz. By jumping too
soon on the Algol bandwagon, these efforts diminished Algol’s value as a universal language
since they committed their users to an obsolete version of Algol.

A Formal Grammer Was Used for Syntactic Description

The Algol-58 Report was only a preliminary specification; it was intended that critiques and

. suggested improvements would be collected until November 1959, when the final language
would be designed. One of the media for exchange of Algol information was the Interna-
tional Conference on Information Processing held by UNESCO in Paris in June 1959. At
this conference John Backus presented a description of Algol using a formal syntactic nota-
tion he had developed. Peter Naur, then the editor of the Algol Bulletin, was surprised be-
cause Backus’s definition of Algol-58 did not agree with his interpretation of the Algol-58
Report. He took this as an indication that a more precise method of describing syntax was
required and prepared some samples of a variant of the Backus notation. As a result, this no-
tation was adopted for the Algol-60 Report and is now known as BNF, Backus—Naur Form,
reflecting the contributions of both men. This important method for describing programming
languages is discussed in the next chapter.

Algol-60 Was Designed

Thirteen members of ACM and GAMM met in Paris for six days in January 1960 in order
to prepare a final report on the language incorporating the various suggestions that had been

e

3.2 DESIGN: STRUCTURAL ORGANIZATION 97

received. The language that resulted, Algol-60, was very different from Algol-58 and was
described in a report published in May 1960. The resulting language was remarkable for its
generality and elegance, particularly considering that it was designed by a committee. Alan
Perlis has described it as “more of a racehorse than a camel.” A few remaining errors and
ambiguities were corrected at a meeting in Rome in 1962, and the “Revised Report on the
- Algorithmic Language ALGOL-60" was published in the Communications in January 1963.
Algol continued to evolve, a process that we discuss at the end of this chapter. We will con-
centrate on Algol-60, since it illustrates best the characteristics of a second-generation lan-
guage.

The Report Is a Paradigm of Brevity and Clarity

At a time when programming language descriptions often stretch to hundreds or thousands
of pages, it is remarkable to realize that the original Algol-60 Report was 15 pages long. The
brevity and clarity of this report contributed significantly to Algol’s reputation as a simple,
elegant language. How was it possible to produce so short a report? One reason was the use
of the BNF notation; this provided a simple, concise, easy-to-read, precise method of de-
scribing Algol’s syntax. We discuss it in the next chapter.

BNF is useful for describing only the syntax of a language. How was the semantics, or
meaning, of Algol’s constructs described? The committee decided to use clear, precise, un-
ambiguous English-language descriptions, which resulted in a report that was readable by
potential users, implementers, and language designers. The clarity and brevity of the Algol-
60 Report have rarely been achieved since; it remains a standard against which all pro-
gramming language descriptions can be compared.

3.2 DESIGN: STRUCTURAL ORGANIZATION

Figure 3.1 displays a small Algol-60 program to compute the mean (average) of the absolute
value of an array. In Algol, the reserved words of the language (e.g., ‘if”) are distinct from
the identifiers (e.g., ‘if”), therefore, it is common to print the reserved words in boldface or
to underline them, as can be seen in this example. These lexical conventions are discussed
in Chapter 4, Section 4.1.

Algol Programs Are Hierarchically Structured

One of the primary characteristics and important contributions of Algol is its use of hierar-
chical structure, or nesting, throughout its design. For example, an Algol program is com-
posed of a number of nested environments, as we can see in the contour diagram in Figure
3.2, which corresponds to the program in Figure 3.1. The nesting of environments is dis-
cussed in Section 3.3, on name structures.

Algol-60 also allows control structures to be nested. For instance, a for-loop, such as

for 1 := 1 step 1 until N do
sum := sum + Datali]

98 GENERALITY AND HIERARCHY: ALGOL-60

begin
integer N;
Read Int (N);

begin
real array Data[l:N];
real sum, avg;
integer 1i;
sum := 0;

- for i := 1 step 1 until N do
begin real val;
Read Real (val);

Data[i] := if val < 0 then-val else val
end;
for i := 1 step 1 until N do
sum := sum + Datalil;
avg := sum/N;
Print Real (avg)
end
end

Figure 3.1 An Algol-60 Program

can be made the object of an if-statement. For example,

if N > 0 then
for i := 1 step 1 until N do
sum := sum + Datal[i]

This nesting greatly decreases the number of goto-statements required in a program. Some
of its implications are discussed in Section 3.5 on control structures.

Constructs Are Either Declarative or Imperative

As in FORTRAN, the constructs of Algol-60 can be divided into two categories —declara-
tive and imperative. The declarative constructs bind names to objects (variables and proce-
dures in Algol’s case) and the imperatives do the work of computation.

There are three kinds of declarations in Algol-60—variable declarations, procedure de-
clarations, and switch-declarations. Variable declarations are similar to FORTRAN’s, except
that the only data types allowed are integer, real, and Boolean; for example,

integer i, j, k

The array declarations are analogous, although the lower bound is allowed to be numbers
other than 1:

real array Data[-50:50]

3.2 DESIGN: STRUCTURAL ORGANIZATION 99

Data

sum

avg

val

Figure 3.2 Contour Diagram of an Algol Program

Algol has dynamic arrays, that is, their bounds can be computed at run-time; this will be
discussed in Section 3.4 on data structures.

Algol uses the term procedure to refer to a subprogram and distinguishes between typed
procedures (Algol’s name for a function) and untyped procedures, which are like FORTRAN
subroutines. Since there are no implicit declarations in Algol, procedure declarations are re-
quired to specify the types of their formal parameters; for example,

real procedure dist (x1, yl, x2, y2);
real x1, yl, x2, y2;
dist := sqgrt ((x1-x2)12 + (yl-vy2)12)

In Section 3.5 on control structures, we will take an in-depth look at procedures.

Finally, the switch-declaration serves the same function as the FORTRAN computed
GOTO, namely, breaking a problem down into cases; this is discussed in Section 3.5 on con-
trol structures.

Imperatives Are Computational and Control-Flow

There are two classes of imperative constructs in Algol-60—the computational and the
control-flow. There are no input-output constructs in Algol-60; it was intended that input-
output be handled by library procedures. As in FORTRAN the only computational statement
is the assignment, which has the form ‘variable := expression’, where ‘variable’ is a simple
variable or an array reference and ‘expression’ is an integer, real, or Boolean expression con-
structed from variables, constants, and operators. Algol provides the standard arithmetic op-
erators (+, —, etc.), relational operators, which return a Boolean result (=, >, <, etc.), and
Boolean operators (A, v, 7, etc.). All of these are organized by precedence to give a natural
appearance to the notation.

The assignment operation ‘:=’, deserves some comment. FORTRAN had used an equal
sign for assignments by the analogy with mathematical definition, for example, ‘let C =

100

GENERALITY AND HIERARCHY: ALGOL-60

27r’. It was widely recognized that this notation was really not very accurate, since assign-
ment and definition are really two different things. For example, I = I + 1 makes no
sense as a definition, although it is a very useful assignment operation. Early programming
notations (and indeed other engineering notations) commonly used a rightward pointing ar-
row to indicate assignment. For instance, T + 1 — I indicates that the value of T +
1 is to be put into I. A number of notations had been used for the assignment arrow in early
programming languages, including = > and >, but the limitations of input devices led the
Algol designers to compromise on ‘=:" as an arrow symbol. Later, on the basis of experi-
ence with FORTRAN, this was turned around into a leftward assignment: i := i + 1.
Almost all programming languages now use this notation.

A significant exception is C and its derivatives, which return to FORTRAN’s ‘=" for
assignment and invents ‘==" for equality. Unfortunately, C’s weak typing permits ‘=" to
be written where ‘==" is intended, which can cause obscure program bugs. This is one of
C’s many second-generation characteristics. (See Section 5.6 for more on C.)

Algol Has the Familiar Control Structures

All other Algol imperatives alter the flow of control in the program. The most obvious of
these is the goto-statement, which transfers to a labeled statement. Algol has a conditional
statement, the if-then-else and an iterative statement, the for-loop which is an elaboration
of FORTRAN’s DO-loop. Finally, it has a procedure invocation, as we have seen. Control
structures are the subject of Section 3.5.

The Compile-Time, Run-Time Distinction Is Important

Algol-60 programs typically go through a compilation process very much like that of FOR-
TRAN programs. There are a few important differences, however. FORTRAN is completely
static, that is, all of the data areas are allocated and arranged by the compiler. By the time
the program is loaded into memory, it is ready to run, with only the contents of the memory
locations being altered by the program. We will see in Sections 3.3-3.5 of this chapter that
various features in Algol (e.g., dynamic arrays and recursive procedures) preclude a static,
compile-time layout of memory. Rather, various data areas are allocated and deallocated at
run-time by the program. In other words, Algol data structures have a later binding time than
FORTRAN data structures. More specifically, the name is bound to a memory location at
run-time rather than compile-time. As in FORTRAN, it is bound to its type at compile-time.

The Stack Is the Central Run-Time Data Structure

There are many disciplines for organizing the dynamic allocation and deallocation of mem-
ory. The one used by Algol (and most other programming languages) is the stack. We will
see in Sections 3.3-3.5 that Algol programs have one stack that they use for holding acti-
vation records for procedures and blocks. Dynamic allocation and deallocation are achieved
by pushing and popping these activation records on the stack. Nonstack-oriented run-time
structures are discussed in Chapter 12 (Section 12.5).

‘

3.3 DESIGN: NAME STRUCTURES 101

3.3 DESIGN: NAME STRUCTURES

The Primitives Bind Names to Objects

We saw m Chapler 2 that the purpose of name structures wWas {0 organize e name SPace,
that is, the collection of names used in the program. We also saw that in FORTRAN the
primitive name structures are the declarations that define names by binding them to objects;
the same is the case in Algol. There is one major difference; in FORTRAN a variable name
is statically bound to a memory location, whereas in Algol we will find that a single vari-
able may be bound to a number of different memory locations and that these bindings can
change during run-time. To see why this is the case, we have to investigate the constructors
of name structures.

The Constructors Is the Block

One of the important contributions of Algol-58 was the idea of a compound statement. This
allows a sequence of statements to be used wherever one statement is permitted. For instance,
although one statement would normally form the body of a for-loop, such as

for i := 1 step 1 until N do
sum := sum + Datal[i]

several statements can form the body if they were surrounded by begin-end brackets:

for i := 1 step 1 until N do

begin
if Data[i]>1000000 themn Data[i] := 1000000;
sum := sum + Datal[i];

Print Real (sum)
end

Similarly, in Algol (as opposed to Pascal and many other languages), the body of a proce-
dure is taken to be a single statement. For example, in the following definition of cosh the
body is a single assignment statement:

real procedure cosh (x); real x;
cosh := (exp(x) + exp(-x))/2;

The fact that a group of statements can be used anywhere that one statement is expected
is an example of regularity in language design. Recall that the Regularity Principle tells us
that a regular language is generally easier to learn and understand (other things being equal)
than an irregular one. The compound statement idea had important consequences for control
structures, which are discussed in Section 3.5.

Between the publication of the Algol-58 and the Algol-60 reports, much research and
discussion were devoted to name structures. This included some of the problems we in-
vestigated in Chapter 2, such as the sharing of data among subprograms. The issue of
name structure also interacted with other issues, such as parameter passing modes and

102 GENERALITY AND HIERARCHY: ALGOL-60

dynamic arrays. The eventual outcome of all this work was a very important idea, block
structure.

Blocks Define Nested Scopes

In FORTRAN we saw that environments are composed of scopes nested in two levels. All
subprograms are bound in the outer (global) scope and all (subprogram-local) variables are
bound in inner scopes, one for each subprogram (see Figure 2.9). Although COMMON blocks
are effectively bound at the global level (since they are visible to all subprograms), in fact
o they must be redeclared in each subprogram. Algol-60 avoids this redeclaration by allowing

the programmer to define any number of scopes nested to any depth; this is accomplished
with a block:

begin declarations; statements end

(The only difference between a block and a compound statement is that a block contains de-
clarations, but a compound statement does not.) This defines a scope that extends from the
begin to the end. This is the scope of the names bound in the declarations immediately fol-
lowing the begin; therefore, these names are visible to all of the statements in the block.
Since these statements may themselves be blocks, we can see that the scopes can be nested.

Contour diagrams are often helpful in visualizing name structures. Let’s compare the
program in Figure 3.1 with the contour diagram in Figure 3.2 to be sure that you understand
it. Remember that the rule for contour diagrams is that we can look out of a box but we can-
not look into one. Figure 3.3 shows an outline of a more complicated Algol program; its con-
tour diagram is in Figure 3.4.

Notice that the contours are suggested by the scoping lines we have drawn to the left of

[begin Figure 3.3 Nested Environments
real x, Y;

~ real procedure cosh(x); real x;
L cosh := (exp(x) + exp(-x))/2;

~ procedure f(y,z):;
integer vy, Z;
begin real array A[l:vy];

|

begin integer array Count [0:991;

end

| ena

3.3 DESIGN: NAME STRUCTURES 103

cosh -

[]

(exp (x) + exp(—x))/2

Count I

Figure 3.4 Contour Diagram of Nested Scopes

the program in Figure 3.3. Contour diagrams originated by completing scoping lines into
boxes. We can see that in addition to blocks, procedure declarations also introduce a level
of nesting since the formal parameters are local to the procedure. We can also see where the
name “contour diagram” came from; the diagrams are suggestive of contour maps.

We have said that the purpose of name structures is to organize the name space. Why
is this important? Virtually everything a programmer deals with in a program is named.
Therefore, as programs become larger and larger, there will be more and more names for the
programmer to keep track of, which can make understanding and maintaining the program
very difficult. Another way to say this is that the context that programmers must keep in their
heads is too large; too many names are visible. Therefore, the goal of name structures is to
limit the context with which the programmer must deal at any given time. Name structures
do this by restricting the visibility of names to particular parts of a program, in the case of
block structure, to the block in which the name is declared. For example, in the program in
Figure 3.1, the variable val is needed only for the two statements in the body of the first
for-loop. Therefore, it is declared in the block that forms the body. We can see from this ex-
ample that it would be very inconvenient if the variables declared in the outer blocks (N,
Data, sum, avg, and i) were not visible in the inner block. For this reason, an inner block

D

104 GENERALITY AND HIERARCHY: ALGOL-60

implicitly inherits access to all of the variables accessible in its immediately surrounding
block; this is what is shown by the contour diagrams. The names declared in a block are
called local to that block; those declared in surrounding blocks are called nonlocal. The
names declared in the outermost block are called global because they are visible to the en-
tire program.

B Exercise 3-1: Draw a contour diagram for a program whose outline is shown in Fig-
ure 3.5. Hint: Recall that the body of a procedure is a single statement, which may be a
compound statement or block.

begin integer i, J; Figure 3.5 Algol Program for Exercise
procedure P (x,y); integer X, Vi
begin real z;

begin real array All:x];

Alil := 3
end

begin Boolean array Bll:y]:
end

end
procedure 0(x); real x;
begin integer n;
procedure R(a,b); integer a, b;
begin integer X;

end
P(n,i);:

end
begin integer i, k;
Q(0.0);
end
end

3.3 DESIGN: NAME STRUCTURES 105

B Exercise 3-2*: Before the designers of Algol decided on block structure, they consid-
ered the possibility of explicit inheritance, that is, having each block explicitly declare
the names from the surrounding environment to which it needed access. Compare and
contrast implicit and explicit inheritance and discuss some advantages and disadvantages
of each. Design name structuring facilities for explicit inheritance in Algol-60.

Blocks Simplify Constructing Large Programs

You will recall that FORTRAN COMMON was designed to allow sharing data structures among
a group of subprograms. One of the problems with COMMON is that the COMMON declaration
must be repeated in each subprogram, which is wasteful and a potential source of errors. You
have already seen that a general guideline in language design is the Abstraction Principle.
Whenever the programmer must restate the same thing, or almost the same thing, over and
over again, we should find a way to abstract the common parts.

To see how Algol-60 blocks apply the Abstraction Principle to shared data structures,
we look again at the symbol table example from Chapter 2. Recall that we represented a
symbol table as four parallel arrays called NAME, LOC, TYPE, and DIMS. These were man-
aged by subprograms such as LOOKUP, VAR, and ARRAY1. The problem is that these sub-
programs needed access to the symbol table arrays but that it is undesirable to pass the ar-
rays to them explicitly. The solution in FORTRAN was to put the arrays into a COMMON
block, but this scattered about the program the information about the structure of the sym-
bol table.

Algol block structure solves this problem since the symbol table arrays can be factored
out into a block that surrounds the symbol table management procedures. This is shown in
Figures 3.6 and 3.7.

Since FORTRAN COMMON blocks must be redeclared in every subprogram that uses

begin
integer array Name, Loc, Type, Dims [1:100];

procedure Lookup (n);
Lookup procedure

procedure Var (n, 1, t);
Enter variable procedure

procedure Arrayl (n, 1, t, diml);
Enter 1l-dimensional Array procedure

other symbol table procedures

uses of the symbol table procedures, e.g.,
Array2 (nm, avail, intcode, m, n);

end

Figure 3.6 Shared Data and Block Structure

106 GENERALITY AND HIERARCHY: ALGOL-60

NAME
LOC
TYPE
DIMS
LOOKUP —
VAR —
ARRAY 1 —
ARRAY 2 —

Shared data

n n

n n

| |

t t
dim1 dim1
dim2

ARRAY2 (nm, avail, intcode, m, n)

Figure 3.7 Contours Showing Shared Data

them, there is a possibility that these declarations may be mutually inconsistent, which can
cause bugs that are difficult to find. In Algol the shared data structures are defined once, so
there is no possibility of inconsistency. In this regard, Algol adheres to the Impossible Er-
ror Principle:

Impossible Error Principle

Making errors impossible to commit is preferable to detecting them after their com-
mission.

Notice that the block that includes the declarations of the symbol table arrays must also
include all the invocations (users) of the symbol table managers. Since the managers must
be visible to the users, and the data structures must be visible to the managers, we can see
that the data structures must be visible to the users; this is a necessary effect of Algol block
structure. This means that users of the symbol table can directly access the symbol table
without going through the symbol table managers. Doing so creates a maintenance problem

3.3 DESIGN: NAME STRUCTURES 107

since the users’ code will be dependent on the structure of the symbol table and will have
to be modified whenever the structure of the symbol table is altered. Notice that the FOR-
TRAN solution did not have this problem; the structure of the symbol table was confined to
the COMMON block declarations, which were confined to the symbol table managers. This
problem in Algol block structure is called indiscriminate access and was not solved for many
years; its solution is discussed in Chapter 7. It is a violation of the Information Hiding Prin-
ciple described in Chapter 2.

B Exercise 3-3: What algebraic property of the visibility relation have we appealed to in
showing that the data structures must be visible to the users?

Dynamic Scoping Allows the Context to Vary

There are two scoping rules that can be used in block-structured languages—static scoping
and dynamic scoping. In static scoping a procedure is called in the environment of its defi-
nition; in dynamic scoping a procedure is called in the environment of its caller. Although
Algol uses static scoping exclusively, we take this opportunity to investigate each of these
scoping strategies and their consequences.

Some languages use dynamic scoping and some use static scoping. Which is better? De-
bate on this question dates back to at least 1960 when the advocates of Algol’s static scop-
ing confronted the advocates of LISP’s dynamic scoping. To see some of the issues involved,
look at this program:

— a:begin integer m;

I: procedure P;
m := 1;
b:begin integer m;
l: P (*)
end;
P (* *)
— end
With dynamic scoping the assignment m := 1 refers to the outer declaration of m when P

is called from the outer block (**) and the inner declaration of m when P is called from the
inner block (*). Look at the contour diagram in Figure 3.8 for the call (**). (In Figure 3.8
we have used DL to refer to the dynamic link, that is, to a pointer from the callee to the
caller.) Since P is called in the environment of its caller, block (a), the contour for P is nested

in the contour of block (a). Hence,m := 1 refers to the m declared in block (a).
The invocation (¥*) is represented by the contour diagram in Figure 3.9, since P is called
from block (b), which is nested in block (a). We can see that the identifier minm := 1

refers to the variable declared in block (b). What we mean when we say that P is called in
the environment of the caller is that the contour for P is nested (dynamically) inside the con-
tour of its caller. This is also why this scope rule is called dyrnamic nesting or dynamic scop-
ing; the scope structure is determined dynamically, that is, at run-time. Thus, the context in
which P is executed is the context from which it was called.

With static scoping the assignmentm := 1 always refers to the variable m in the outer

i
{
|
e

108 GENERALITY AND HIERARCHY: ALGOL-60

(a)

Figure 3.8 Invocation of P from Outer Block (a)

block. This is so because P is always called in the environment of its definition; i ., the con-
text in which P is executed is always the context in which it was originally defined. This
means that the contour for P must be nested in the contour in which it was defined regard-
less of where it is called from. Therefore, the contour for the call (*) is as shown in Figure
3.10. Observe that the contour for P is nested in the contour for block (a) even though P was
called from block (b); the context in which P executes will always be block (a) regardless
of P’s caller. The contour diagram shows that the m visible from the body of P is the m de-
clared in block (a).

Since scope rules apply uniformly to all names (not just variable names), the differences
between dynamic and static scoping can also be seen in the scope of procedure names. This
affords a good example of the advantages and disadvantages of each.

(*)

Figure 3.9 Invocation of P from Inner Block (b)

3.3 DESIGN: NAME STRUCTURES 109

Call P (%)

Figure 3.10 Invocation of P when called in Environment of Definition

Suppose we wished to define a function sum that summed the values of a function f
from O to 1. This is easily accomplished with dynamic scoping:

begin
real procedure sum;
begin real S, x; S:=0; x:=0;

for x := x + 0.01 while x=1 do
S := s + f(x);
sum := S/100

end;

end

To use the sum function, it is necessary only to name the function to be summed £f. For
example, the function x> + 1 could be summed by embedding the following block in the
scope of sum (indicated by ‘.. .’, above);

begin
real procedure f (x);
value x; real x;
f := x72 + 1;
sumf := sum
end

Since sum is called in the environment of the caller, it will be called in an environment in
which £ is the function x?> + 1. This is one of the advantages of dynamic scoping: We can
write a general procedure that makes use of variables and procedures supplied by the caller’s
environment. This can also be accomplished by passing these variables and procedures as

110 GENERALITY AND HIERARCHY: ALGOL-60

explicit parameters to the procedure, which can be conveniently done in Algol with Jensen’s
device (described in Section 3.5).

B Exercise 3-4: Show that the above definition of sum works by drawing a contour di-
agram for the above program when it is executing in sum.

B Exercise 3-5: Write the sum procedure using Jensen’s device and static scoping (see
Section 3.5).

B Exercise 3-6: Describe how sum would be implemented in Pascal, FORTRAN, or some
other language with which you are familiar.

We have seen above how we can use to advantage the fact that in a dynamically scoped
language a procedure is executed in the environment of its caller. Next, we investigate the
problems to which this can lead. Suppose we wished to define a procedure roots to com-
pute the roots of a quadratic equation, ax? + bx + ¢ = 0. To do this it is useful to have an
auxiliary function discr (a,b.c) that computes the discriminant, b*> — 4ac. Our program
could be structured like this:

— begin

— real procedure discr (a, b, c¢);
values a, b, c; real a, b, c;
L discr := b12 - 4 X a X c¢;

— procedure roots (a, b, c, rl, r2);
value a, b, c¢; real a, b, ¢, rl, r2;
begin

t ... d := discr (a, b, c);

end

roots (cl, c2, c3, rootl, root2);

L end

Now, suppose someone happened to call our roots procedure from a block in which a dif-
ferent procedure named discr had been defined:

begin
real procedure discr (x, Yy, 2Z);
value x, y, z; real X, vy, Z;
discr := sart (x12 + y12 + z12);

roots (acoe, bcoe, ccoe, rtl, rt2);

end

3.3 DESIGN: NAME STRUCTURES 111

Our discr procedure has been inadvertently replaced by another! Needless to say, our
roots procedure will not give the right results. In fact, if this imposter discr had not hap-
pened to have the right number of parameters of the right type, it would have caused our
roots to produce an error.

B Exercise 3-7: One way to decrease the probability of these errors happening is to pick
“unlikely” names for our auxiliary procedures, for example, QdiscrQ057. Discuss the
implications of this practice for program readability.

B Exercise 3-8: Draw the contour diagram that illustrates the roots example.

The problem described above is an example of vulnerability, so called because the roots
procedure is vulnerable to being called from an environment in which its auxiliary proce-
dure is not accessible. To put it another way, there is no way roots can preserve its access
to its discr. Vulnerability and a means of eliminating it are discussed in Chapter 7.

Exercise 3-9: Show that the above problem can be solved, even in the presence of dy-
namic scoping, by a proper arrangement of the nesting of roots and discr. Show, on
the other hand, that if discr is shared by two or more procedures, then there is no way
to prevent vulnerability in the presence of dynamic scoping; that is, there is no way these
procedures can ensure their access to discr.

Static and Dynamic Scoping Summarized

Let’s try to summarize what we have seen about static and dynamic scoping. In all languages
the meaning of a statement or expression is determined by the context in which the state-
ment or expression is interpreted. The context, in turn, is determined by the scope rules of
the language. Since in a dynamically scoped language the scopes of names are determined
dynamically, that is, at run-time, we can see that in such a language the meanings of state-
ments and expressions may vary at run-time. ‘ -

Conversely, in a statically scoped language, the scopes of names are determined stati-
cally by the structure of the program so the meanings of statements and expressions are fixed.
To put this another way, the meanings of all statements and expressions can be determined
by inspecting the static structure of the program without having to understand its dynamic
behavior. To summarize:

* In dynamic scoping the meanings of statements and expressions are determined by the dy-
namic structure of the computations evolving in time.

* In static scoping the meanings of statements and expressions are determined by the static
structure of the program.

Static Scoping Aids Reliable Programming

The emphasis on reliable programming in recent years has led to the general rejection of dy-
namic scoping. It is not hard to understand why. We know how confusing it can be if some-

oy

112

GENERALITY AND HIERARCHY: ALGOL-60

one uses the same word in the same conversation in two different ways, if the context is
switched without warning. This practice can be so detrimental to clear thought that it is clas-
sified as a logical fallacy, equivocation. The same holds in programs. Programmers will be
more likely to write reliable programs if, when they write a statement or expression, they
know what it means. A scoping discipline that allows the meaning of procedures to shift and
slide depending on their context of use is not conducive to reliable programming. This is the
reason that Algol and almost all new programming languages (including newer dialects of
traditionally dynamically scoped languages such as LISP) have adopted static scoping.

In summary, we have seen that static scoping causes the static structure of a program to
agree more closely with its dynamic behavior than does dynamic scoping. But this is just the
Structure Principle, which states that the dynamic behavior of a program should correspond
in a simple way to its static structure. Therefore, we can say that static scoping is in accord
with the Structure Principle, but dynamic scoping is not.

B Exercise 3-10: Discuss static and dynamic scoping. Do you agree that static scoping
is better? Can you think of any ways in which dynamic scoping could be improved with-
out losing its good points?

Blocks Permit Efficient Storage Management on a Stack

In Chapter 2 we saw that the FORTRAN EQUIVALENCE-statement was intended to permit
a programmer to conserve memory by using it for multiple purposes. We also discussed some
of the pitfalls in this mechanism and hinted that newer languages provide a better solution.
To understand this better solution, consider this Algol program outline:

— a:begin integer m, n;
b:begin real array X[1:100]; real y;

end
c:begin integer k; integer array M[0:50];

end

L end

The contour diagram of the above program outline is shown in Figure 3.11. We can see that
the two blocks labeled (b) and (c) are disjoint, that is, neither is nested in the other. What
are the consequences of this? Whenever the program is executing in (b), the local variables
of (c), namely k and M, are not visible since the site of execution is not in their scope. Con-
versely, whenever the program is executing in (c), the local variables of (b) are not visible.
To put it another way, the variables X and y are never visible at the same time as the vari-
ables k and M because the two sets of variables have disjoint scopes.

It is necessary to make only one assumption in order to turn this fact about disjoint
scopes into a solution of the storage-sharing problem. This assumption is that the value ofa

3.3 DESIGN: NAME STRUCTURES 113

(a)

(b) (c)

Figure 3.11 Contours of Disjoint Scopes

variable is retained only so long as the program is executing in the scope of that variable or
in a block or procedure that will eventually return to the scope of that variable. In other
words, if the flow of control leaves the scope of a variable (i.e., leaves the block in which
the variable is declared), then the contents of that variable are discarded.? That is, when the
flow of control enters a block, all of the variables declared in that block become visible but
with undefined content—that is, they are uninitialized.

Why does this solve the shared array problem? Consider the previous example (Figure
3-11): The array X exists only when the program is executing in block (b) or a block or pro-
cedure that can return to (b). Whenever the program leaves this block, the array becomes in-
visible and its contents are discarded. In other words, for all intents and purposes, when the
program is not in block (b), the array X does not exist. The same applies to the array M; it
exists only when the program is within, or can return to, the (c) contour. Since these con-
tours are disjoint, the program can never be in both of them at the same time so the arrays
X and M never exist at the same time. This is the solution to our problem: Since these two
arrays can never coexist, they can occupy the same storage locations when they do exist.

Notice that this is much more secure than FORTRAN EQUIVALENCE. Recall that with
EQUIVALENCE there was the danger that a program might store into one array (say M) while
the other (say X) was still needed. In Algol this can never happen since the arrays are never
visible at the same time. By sharing storage only between disjoint environments, Algol pre-
vents arrays from being corrupted and ensures (at least in this situation) the security of the
system.

We have seen that Algol block structure permits memory to be used for multiple pur-
poses, but we have not discussed how this is implemented. Notice that Algol blocks obey a
last-in, first-out discipline. That is, the block that was last entered is the first to be exited,
and the block that was first entered (i.e., the outermost) is the last to be exited. This is a sim-
ple consequence of the fact that blocks are nested, that is, they are structured hierarchically.
Whenever we encounter a last-in, first-out discipline, the data structure that should come to

2 For situations where this is not desirable, that is, where the value of a variable must be retained from one
activation of a block to its next, Algol provides a mechanism called an own variable. We will not discuss
this further in this book.

114 GENERALITY AND HIERARCHY: ALGOL-60

mind is a stack. In fact, stacks are often called LIFOs (pronounced “lie-foe”), an acronym
for “last-in, first-out.” Stacks are used for storage allocation in the following way. When-
ever a block is entered, an activation record for that block is pushed onto the top of the run-
time stack. This activation record contains space for all the variables local to that block. Con-
versely, whenever the block is exited, its activation record will be popped off of the stack,
thus freeing its storage for use by other blocks. This process is pictured in Figure 3.12. We
can see that the arrays X and M share the same memory locations; storage for them is dy-
namically (i.e., at run-time) allocated and deallocated, and the block structure of Algol en-
sures that this is done in a secure way transparent to the programmer (recall Section 1.4).
Before we leave this subject, we must mention that it was not an accident that the storage

P area associated with a block was called an activation record; we will see in Section 3.5 that
this use of the term is completely consistent with its use in Chapter 2 to denote the state of
a subprogram.

Responsible Design Entails Understanding Users’ Problems

The distinction between FORTRAN EQUIVALENCE and Algol blocks illustrates an impor-
tant issue in programming language design. We can imagine the Algol designers asking FOR-
TRAN programmers about the features they wanted in the new international language, and
we can imagine the programmers saying that they would like something like EQUIVALENCE
so that they can share memory among arrays. The Algol designers could have decided to sat-
isfy this request by including something like an equivalence in Algol, but they did not.
Rather, they understood the programmers’ problem—the need to share storage among ar-
rays—and provided a better, more secure solution: block-structured storage allocation. This
is an example of responsible language design, because the Algol committee applied their lan-
guage design expertise to the solution of the problem, rather than irresponsibly providing
whatever the programmers desired. As Niklaus Wirth, the designer of Pascal, has said, “The
language designer must not ask ‘what do you want?’, but rather ‘how does your problem

y
X M
k
enter (a) n enter (b) n exit (b) enter (c) n exit (c) n exit (a)
— — —_— — | — —
m m m m
] —
to 4 I3 ty

Figure 3.12 Storage Reallocation on a Stack

3.4 DESIGN: DATA STRUCTURES 115

arise?’ “ Language designers, not users, should be responsible for the features in languages.
We can summarize these considerations in

The Responsible Design Principle

_ Do not ask users what they want; find out what they need.

3.4 DESIGN: DATA STRUCTURES

The Primitives Are Mathematical Scalars

Like FORTRAN, Algol-60 was intended to be used for scientific applications. Therefore, the
primitive data types are mathematical scalars—integer, real, and Boolean. There are no
double-precision types because their use is necessarily machine dependent and one of the
goals of Algol was to be a universal, and hence machine-independent, language. Why is dou-
ble precision machine dependent? Suppose we wanted 10 digits of accuracy in a computa-
tion. To decide whether to use single or double precision, we would have to know the word
size and floating-point representation used on our computer. If we then transported the pro-
gram to another computer with a different word size, we would have to look at every dec-
laration to decide whether it should be single or double precision on the new computer. The
solution adopted by the Algol designers was to have only one precision in the language; if
the implementation provided more than one precision, this would be selected by non-Algol
constructs (e.g., specially interpreted comments). An alternate approach, which some lan-
guages have adopted, is to let the programmer specify the precision desired (e.g., 10 digits),
and have the compiler pick the appropriate representation (e.g., single or double). This adds
to the complexity of the language since there must be means for the programmer to specify
this information. Algol took the simpler approach, a single type real.
All these approaches are attempts to follow the Portability Principle:

Portability Principle

Avoid features or facilities that are dependent on a particular computer or a small class
of computers.

® Exercise 3-11*: Do you agree with the designers of Algol on the issue of precision?
Design a mechanism for Algol that allows the programmer to specify the precision of
floating-point numbers in a machine-independent way. Discuss the trade-offs involved in
each of the two methods.

Algol also did not provide a complex data type (recall that FORTRAN provided
COMPLEX numbers). Although complex numbers are useful in scientific computation, they

116

GENERALITY AND HIERARCHY: ALGOL-60

were omitted from Algol because they are not primitive, that is, it is not very difficult or in-
efficient to define them in terms of the other primitives, namely, reals. However, it is not
very convenient to have to do so. Consider the following fragment of a FORTRAN program
that uses COMPLEX numbers.

COMPLEX X, Y, Z
X = (Y + Z2)/X

To manipulate complex numbers in Algol, it would be necessary to write procedures to per-
form the complex arithmetic operations (e.g., ComplexAdd, ComplexDivide). Complex
numbers themselves would have to be represented either as pairs of real variables or as two-
element real arrays. If we chose the latter representation, the FORTRAN fragment shown
above would look like this in Algol-60:

real array x, v, z, t [1:2];
ComplexAdd (t, y, 2z);
ComplexDivide (x, t, Xx);

Notice that it is necessary to introduce a new temporary array, t. We can see that the
Algol-60 solution is much less convenient and considerably less readable. This is a classic
trade-off in programming language design: Are the convenience, readability, and efficiency
of an additional data type (complex, in this case) worth the complexity of adding it to the
language? Notice that there is substantial complexity associated with adding the complex
type. If we wish to maintain the regularity of the language (thus following the Regularity
Principle), we will want complex numbers to be first-class citizens. This means that there
must be complex variables, complex arrays, complex parameters, complex operations, and
complex relational tests. There must also be a syntax for writing complex numbers and in-
put-output formats for reading and printing them. Finally, it will be necessary to decide
whether there are meaningful coercions between complex numbers and other values. For in-
stance, we will certainly want to be able to-add complex and real numbers. But how about
complex numbers and integers? How will we extract the real and imaginary parts of a com-
plex number? We can see that the addition of a data type to a programming language is not
a simple decision and should not be made lightly. In this case, the designers of Algol-60 de-
cided to follow the Simplicity Principle, and omit complex.

B Exercise 3-12*: Do you think complex numbers should have been included in Algol-
60? Take a position and defend it.

B Exercise 3-13: Program ComplexAdd, etc., in Algol-60 or another language without
a built-in complex data type.

Sometimes designers do decide to have second-class citizens in a programming lan-
guage. An example of this is the string data type in Algol-60. We mentioned earlier that
Algol-60 does not contain any input-output statements such as the FORTRAN READ, WRITE,
and FORMAT statements. Rather, it was intended that each Algol implementation would pro-
vide a set of library procedures for input-output. The Algol designers saw that this implied
a facility for passing strings to procedures since otherwise there would be no way of print-
ing headings or other alphanumeric information. Rather than introduce a full-fledged string

3.4 DESIGN: DATA STRUCTURES 117

data type with all its associated variable declarations, operators, relations, and so on, the Al-
gol designers decided to allow strings in only a few limited contexts. Specifically, string de-
notations (i.e., string literals such as ‘Carmel) are only allowed as actual parameters, and
the string type is only allowed in the specifications of formal parameters. There are no op-
erators, relations, coercions, or variable declarations for strings. The effect of these restric-
tions is that the only thing that can be done with strings is to pass them as arguments to pro-
cedures. All those procedures can do is pass them as arguments to other procedures, and so
forth. What good is this? There’s no point in just passing strings around; sooner or later
someone must do something with them. That is correct, but it cannot be done in Algol. Ul-
timately, the string must be passed to a procedure coded in some other language, probably
assembly language. This would be typical of, for example, input-output procedures.

We have seen that in both FORTRAN and Algol-60 character strings are second-class
citizens, although in Algol, at least, this does not cause a loophole in the type system. The
exclusion of strings was justified on the basis that these were scientific languages. Com-
mercial programming languages such as COBOL, on the other hand, provided strings as
bona-fide data types. We will see, however, the Algol was the last major programming lan-
guage without strings; almost all newer languages, including PL/I, Algol-68, Pascal, C, and
Ada, have some ability to deal with strings in the language.

B Exercise 3-14*: Design a string data type for Algol-60. Address issues such as the op-
erations, relations, and coercions to be provided.

Algol Follows the Zero-One-Infinity Principle

We have said that regularity was a goal of the Algol-60 design. Since a regular design has
fewer special cases, it is generally easier to learn, remember, and master. There is a special
application of the Regularity Principle called the Zero-One-Infinity Principle.

Zero-One-Infinity Principle

The only reasonable numbers in a programming language design are zero, one, and in-
finity.

The easiest way to see what this means is to look at a couple of examples. The FORTRAN
IV design is filled with numbers other than zero, one, or infinity; for example, identifiers are
limited to six characters, there are at most 19 continuation cards, and arrays can have at most
three dimensions. Six, 19, three, and so on, are all numbers that a FORTRAN programmer
must remember, which will be difficult since the numbers seem completely arbitrary. Con-
sider the FORTRAN limitation of identifiers to six characters. Why six? No one knows, but
it probably has something to do with the representation of the symbol table in the original
FORTRAN I implementation or the word size on the IBM 704. This number is small enough
to be an annoyance to the programmer since a longer identifier will often make the program
more readable. The Zero-One-Infinity Principle says that the number of characters allowed
in a name should be zero, one, or infinity. Zero, of course, would not make any sense in this
case; a one-character limit would make sense, although we would consider it very limiting.

118

GENERALITY AND HIERARCHY: ALGOL-60

Indeed, many early programming languages (including preliminary FORTRAN and BASIC)
allowed only one-character names (as is common in mathematics). Algol and most newer
languages have chosen the infinity option; that is, there is no limit on the length of an iden-
tifier. In reality there must be some limit, such as the memory capacity of the computer, but
the limit is so large as to be effectively infinite. In summary, the Zero-One-Infinity Princi-

_ ple states that any limit in a programming language design should be none, one, or (effec-

tively) infinite.

Arrays Are Generalized

Recall that FORTRAN IV arrays are limited to three dimensions (seven in FORTRAN 77)
this was a result of efficiency considerations in the first FORTRAN system. This is clearly
a violation of the Zero-One-Infinity Principle, so Algol arrays are generalized to allow any
number of dimensions. This is not a pointless generalization; arrays of more than three di-
mensions are not uncommon in scientific computation.

Algol also generalizes FORTRAN arrays by allowing lower bounds to be numbers other
than 1. That is, FORTRAN arrays are always addressed as A(1) through A(n), where n is
the dimension of the array. In Algol, if the array is declared ‘A[m:n]’, then the legal array
references are A[m] through A[n]. We can see that this array has n — m + 1 elements. It is
often useful to have lower bounds other than 1. For example, to keep track of number of
days according to temperature, from —100 to +200, we declare an array

integer array Number of days [-100:200]

and then use negative indexes for temperatures below zero. For example, Number of days

[-25] represents the number of days with a temperature of —25. Of course, the same
can be accomplished with a fixed lower bound. Number of days [temperature]
could be written in FORTRAN as NUMDAY (TEMPER + 101). The latter is less readable
and more error-prone since the programmer must always remember to include the bias of
101 in every array reference and to correct it if the program changes. Most programming
languages designed since Algol-60 allow the programmer to specify both upper and lower
bounds.

@ Exercise 3-15: Write the addressing equation for one-, two-, and three-dimensional ar-
rays with arbitrary (i.e., user-specified) lower bounds.

B Exercise 3-16: Generalize the above equation for an n-dimensional array with dimen-
sions [kj:uq, kaiuo, . . ., ki),

Stack Allocation Permits Dynamic Arrays

It is often the case that the size required for an array is not known when the program is writ-
ten; often it depends on the data with which the program is run. Consider the example in
Figure 3.1, the Absolute-Mean program; clearly, the array Data should be exactly N ele-
ments long, where N is the number of input values. In the FORTRAN program in Figure 2.3,
we dimensioned the array to 900 elements. If there are fewer than 900 input values to be
processed, then the rest of the array will be wasted (which means that the program is larger

3.4 DESIGN: DATA STRUCTURES 119

than was necessary). If more than 900 values are supplied, the program will try to oversub-
script the array, which either will cause an error or cause the program to fail in some more
mysterious way. This is a pervasive problem with languages that have static array dimen-
sions; it is always necessary to pick some number to use as the dimension. Hence, the pro-
grammer must trade off wasting space by making the array large enough to handle almost
all applications against not being able to handle some data sets because the array is too small.
Static arrays force the programmer to violate the Zero-One-Infinity Principle in the appli-
cation program since in its documentation it will be necessary to say something like, “The
number of input values cannot exceed 900.”

The Algol committee recognized this problem and devoted much discussion to dynamic
arrays between the Algol-58 and Algol-60 reports. We can see from the example in Figure
3.1 that Algol-60 permits expressions to be used in array declarations, N in this case. This
value N, representing the number of input values, is read in within the outer block. The result
is that the array Data is exactly the right size; there are no unused array elements and there
is no limit on the number of input values that can be processed (aside, of course, from the
computer’s memory capacity). Notice that Algol-60’s arrays are dynamic in a limited fash-
ion; the array’s dimensions can be recomputed each time the block to which it is local is en-
tered, but once the array is allocated, its bounds remain fixed until its scope is exited. Some
other programming languages (including Algol-68) permit arrays that are even more dynamic.
In these languages the arrays can grow or shrink at any time; these are sometimes called flex-
ible arrays. The Algol-60 design is actually a good trade-off between flexibility and efficiency
since, as we will see below, dynamic arrays are very simple to implement on a stack.

In Section 3.3 (pp. 112-114) we saw the way that a stack permits efficient storage allo-
cation in a block-structured language. Every time a block is entered, an activation record for
that block, containing all of the block’s local storage, is pushed onto the run-time stack. When
the block is exited, this activation record is deleted. This makes Algol’s dynamic arrays par-
ticularly simple to implement; since the array is part of the activation record and its size is
known at block-entry time, an appropriate size activation record can be allocated. This acti-
vation record is deleted at block-exit time so that on the next entry to that block a completely
different size activation record can be created. We can also see some of, the difficulty in im-
plementing flexible arrays since, if an array grew, it would be necessary to move everything
above it on the stack in order to make room. Algol’s dynamic arrays are an excellent exam-
ple of a programming language design trade-off. Newer languages (e.g., Pascal) have not al-
ways provided dynamic arrays; in Chapter 5 we will see some of the problems this has caused.

Algol Has Strong Typing

Algol-60 is an example of a programming language with strong typing, which means that
the type abstractions of the language are enforced. A strong type system prevents the pro-
grammer from performing meaningless operations on data. A less formal way of saying this
is that there are no typing “loopholes”; for instance, a programmer can’t do an integer addi-
tion on floating-point numbers, or do a floating-point multiply on Boolean values.? In Chap-
ter 2 we saw that FORTRAN is not a strongly typed language. In particular, by using COM-

3 Algol does have a loophole in its typing caused by inadequate specification of procedural parameters. Since
Pascal has the same problem, we defer its discussion to Section 5.5

120

GENERALITY AND HIERARCHY: ALGOL-60

MON and EQUIVALENCE it is possible to set up situations where two or more variables, with
different types, are aliases for the same location. This is a security problem when done ac-
cidently and a maintenance problem when done intentionally. In Algol there is no way to
trick the system into believing and acting as though an integer were a Boolean or anything
similar.

We should carefully distinguish between illegitimate type violations of this sort and per-
fectly legitimate conversions and coercions between types. For instance, Algol, like most
programming languages, coerces integers to reals and provides a conversion operator for con-
verting reals to integers. These are machine-independent operations. The results of a type
system violation, however, depend on the particular data representations used on a particu-
lar implementation; we say they are implementation dependent. Obviously, implementation
dependencies violate the Portability Principle.

If you have done any system programming using a high-level language, you are proba-
bly saying right now, “That is all very well for application programmers, but systems pro-
grammers often have to violate the type system.” That is correct. For example, if we are pro-
gramming a memory management system, it is necessary to treat memory cells as raw storage
without regard for the type of the values stored in them. As another example, the input-
output conversion routines will probably have to be able to manipulate the characteristic and
mantissa of floating-point numbers as integers. However, we must recognize that a pro-
gramming language’s type system is a safety feature, and as such, it must be circumvented
with extreme care. You are probably aware of the interlock on most electrical equipment that
disconnects the line cord when the back is removed; this is to prevent dangerous electrical
shock. Since electrical technicians must be able to operate the equipment with its back off
in order to repair it, they use “cheater cords” to supply power and “cheat” the interlock sys-
tem. This requires extra precautions that are part of the training of an electrical technician.
The same applies to the type system; it is true that it must be “cheated” in some situations,
but this should be done only by “qualified service personnel” who know the proper precau-
tions. One of the precautions is that it be done only when really necessary; another is that
the violation be clearly documented. Since we all consider ourselves qualified, and we all
think that our needs are really necessary, considerable self-discipline is required. In fact,
most legitimate type system violations can be replaced by special conversion functions that
provide access to the representation. Most of the violations that people think are necessary
really are not; there are usually better, safer ways to accomplish the task. Most programming
languages that are intended for systems programming do provide some “loophole” through
the type system, but the conscientious programmer is advised to avoid it if at all possible,
since it will likely lead to unreliable, nonportable, unmaintainable programs. Intentional cheat-
ing of this safety system will not be discussed further in this book.

B Exercise 3-17*: Do you agree with the above analysis of violations of the type sys-
tem? List some of the situations in which a violation of the type system is justified. De-
scribe safe programming language mechanisms that will handle these problems. How
much additional complexity does this add to the programming language? (Keep in mind
that these facilities will be rarely used.)

| Exercise 3-18*: Most FORTRAN systems do not check that the types of actual and
formal parameters agree. For example, an integer can be passed to a subprogram that is

3.5 DESIGN: CONTROL STRUCTURES 121

expecting a real. Discuss the security implications of this. How could this loophole be
avoided? (Do not forget to take separately compiled subprograms into account.)

Exercise 3-19*: Identify some other safety features in the languages we have discussed
and in any other languages with which you may be familiar. Propose at least two new
safety features that will catch programmer errors without getting too much in the way.

3.5 DESIGN: CONTROL STRUCTURES

Primitive Computational Statements Have Changed Little

The primitives from which control structures are built are those computational statements
that do not affect the flow of control. In Algol, this is the assignment statement, which is es-
sentially the same as FORTRAN’s (except that a different symbol is used : ="). Recall that
in FORTRAN the input-output statements are also control structure primitives; this is not
the case in Algol. Input-output is performed by library procedures rather than specialized
statements. Therefore, it is quite accurate in the case of Algol to say that the function of con-
trol structures is to direct and manage the flow of control from one assignment statement to
another.

Control Structures Are Generalizations of FORTRAN'’s

We saw in Chapter 2 that FORTRAN’s control structures are closely patterned on the branch
instructions of 1950s computers.* Algol has provided essentially the same structures in
a generalized and regularized form. For example, FORTRAN has a simple logical IF-
statement:

IF (logical expression) simple statement

in which the consequent, or then-part, of the IF is required to be a single, simple, uncon-
ditional statement (such as an assignment, GOTO, or CALL). In Algol this arbitrary restric-
tion is removed, and the consequent is allowed to be any other statement, including another
if-statement. Furthermore, the consequent is allowed to be a group of statements, as we will

see.
The if-statement is also extended beyond FORTRAN by having an alternate, or else-

part, which is executed if the condition is false, for example,

if T[middle] = sought then location := middle
else lower := middle + 1;

This allows a more symmetric analysis of a problem into two cases, one for which the con-
dition is true and one for which it is false.

4 Throughout this section ‘FORTRAN’ refers to ‘FORTRAN IV’. We concentrate on this dialect because
our intention in to contrast second-generation languages (e.g., Algol-60) with first-generation languages (e.g.,
FORTRAN IV).

122 GENERALITY AND HIERARCHY: ALGOL-60

The Algol for-loop is also more general than FORTRAN’s DO-loop. It includes the func-
tion of a simple DO-loop, for example,

for 1 := 1 step 2 until N X M do
inner[i] := outer[N X M - i];

It also has a variant that is similar to the while-loops found in languages such as Pascal. For
instance, the Algol-60 for-loop:

for NewGuess := Improve (0ldGuess)
while abs(NewGuess - 0ldGuess) > 0.0001
do 0OldGuess := NewGuess;

corresponds to the Pascal while-loop:

NewGuess := Improve (0ldGuess) ;
while abs (NewGuess - 0ldGuess) > 0.0001 do
begin
0ldGuess
NewGuess
end;

1l

NewGuess;
Improve (OldGuess)

We will see later in this section that there are a number of other cases in which Algol-
60’s control structures are more regular, more symmetric, more powerful, and more general
than FORTRAN’s. There are a number of reasons for this. As we have seen, FORTRAN has
many restrictions, such as the restrictions on the IF-statement mentioned above and the re-
strictions on array subscripts described in Chapter 2. These restrictions were made for many
reasons, including efficiency (the array restrictions) and compiler simplicity (the IF restric-
tions). Whatever their reasons, these restrictions almost always seem inexplicable to the pro-
grammer; violations of the Zero-One-Infinity Principle and other instances of irregularity in
a language’s design make the language harder to learn and remember (the Regularity Prin-
ciple). The Algol designers attempted to eliminate all asymmetry and irregularity from Al-
gol’s design. Their attitude was, “Anything that you think you ought to be able to do, you
will be able to do.” As we will see, they got carried away in a few instances.

Nested Statements Are Very Important

As previously mentioned, there is an irregularity in FORTRAN’s IF-statement. That is, if
the consequent of the IF is a single statement it can be written directly (most of the time),
for example,

IF(X .GT. Y) X = X/2

But if it is more than one statement, it is necessary to negate the condition and jump over
the consequent; for example,

IF(X .LE. Y) GOTO 100
X X/2
Y Y + DELTA

100

3.5 DESIGN: CONTROL STRUCTURES 123

One of the most obvious problems with this is that it makes it difficult to modify a program;
adding one statement to a consequent may require restructuring the entire IF-statement. Thus,
the FORTRAN IF undermines maintainability. The other objection to FORTRAN’s syntax
is simply that it is irregular; conditions are written in completely different ways solely on
the basis of the number of statements in their consequents. This is a source of errors since
‘programmers may forget to negate the condition with multistatement consequents.

Recall that FORTRAN’s DO-loop does not have this problem because it can be nested.
That is, its syntax is

DO 20 I =1, N
statement 1
statement 2

statement m
20 CONTINUE

This allows any number of statements to be included in the body of the loop (including other
DO-loops); this is clearly a much better solution. We can see that the DO and CONTINUE
form brackets, like parentheses, that mark the beginning and end of the loop. Since FOR-
TRAN allows CONTINUE statements to be placed anywhere in a program (they act as “do
nothing” statements), matching statement labels (‘20 in the example above) are used to de-
cide which DO goes with which CONTINUE. We will see that this same approach is used in
some newer programming languages.

There is another situation in which FORTRAN handles the single- and multiple-
statement cases asymmetrically. As we saw, the usual way to define a function in FORTRAN
is a declaration such as

FUNCTION F (X)
statement 1

statement m
END

This is the multiple-statement case; the body of the function is bracketed by a matching
FUNCTION and END (although FORTRAN does not allow functions to be nested like DO-
loops). However, if the body of the function is composed of a single statement, F = expr,
then the entire declaration can be written in an abbreviated form>:

F(X) = expr

Again, we can see that the two cases are handled asymmetrically.

The Algol designers realized that all control structures should be allowed to govern an
arbitrary number of statements, so in Algol-58 these statements were all made bracketing.
That is, each control structure (such as if-then) was considered an opening bracket that had

5 In this case, however, the function F is local to the subprogram in which it is declared, a further instance
of irregularity.

124

GENERALITY AND HIERARCHY: ALGOL-60

to be matched by a corresponding closing bracket (such as end if). Later, during the Algol-
60 design, and largely as a result of seeing the BNF description of Algol-58, they realized
that one bracketing construct could be used for all of these cases. The approach they used
was that all control structures are defined to govern a single statement; for example, the body
of a for-loop is a single statement and the consequent and alternative (then-part and else-
part) of if-statements are both single statements. Even the body of a procedure is a single
statement. However, the designers went on to define a special kind of statement, called a
compound statement, that brackets any number of statements together and converts them to
a single statement. That is, a group of statements surrounded by the brackets begin and end,
for example,

begin
statement 1;
statement 2;

statement n
end

is considered a single statement and can be used anywhere a single statement is allowed.
Look again at Figure 3.1 and compare the two for-loops. The body of the first is a com-
pound statement containing two simple statements, and the body of the second is a single
assignment statement. In Figure 3.3 we can see several procedure declarations. In the defi-
nition of cosh the body of the procedure is a single simple statement, similar to FORTRAN’s
abbreviated function definition. The declaration of £ is the more common case, in which the
body of the procedure is a compound statement.

You have probably noticed by now that in Algol the begin—end brackets do double
duty—they are used both to group statements into compound statements and to delimit
blocks, which define nested scopes. This is a lack of orthogonality in Algol’s design; there
are two independent functions—the defining of a scope and the grouping of statements—
that are accomplished by the same construct. This may seem like an economy, but it of-
ten leads to problems. For example, we saw in Section 3.2 that block entry requires the
creation of an activation record to hold the local variables of the block. Since in a com-
pound statement there are no local variables, no activation record is required. In fact, it
would be quite inefficient and needless to create an activation record everywhere a com-
pound statement is used since this is just a syntactic mechanism for grouping statements
together, similar to parentheses in expressions. Therefore, it is necessary for compilers to
determine whether any variables or procedures are declared in a block or procedure in or-
der to determine whether or not to generate block entry-exit code. We will see in later
chapters that newer languages have separated the two functions of statement grouping and
scope definition.

We should point out that Algol’s syntax does not entirely solve the problems with FOR-
TRAN'’s syntax. In particular, there still is a minor maintenance problem since if a loop body
(or procedure body, or consequent, or alternate) is changed from a single statement to sev-
eral statements, the programmer must remember to insert the begin and end. Forgetting this
is a common mistake, since their absence is not obvious in a well-indented program; for
example,

3.5 DESIGN: CONTROL STRUCTURES 125

for i := 1 step 1 until N do

ReadReal (val) ;

Data[i] := if val < 0 then -val else val;
for 1 := 1 step

For this reason many Algol programmers have adopted the coding convention of always us-
ing begin and end, even if they surround only a single statement. We will see in Chapter 8
that newer languages have solved this problem.

B Exercise 3-20*: We have seen several problems with blocks and compound statements
in Algol. Discuss some alternate approaches that have the advantages of blocks and com-
pound statements but solve these problems.

B Fxercise 3-21*: In FORTRAN, a CONTINUE matches a DO-loop only with the same state-
ment number, whereas in Algol an end matches the nearest preceding unmatched begin. Fur-
thermore, the same brackets are used for all nested statements. Discuss the consequences of
a missing end in the middle of a large, deeply nested Algol program. When is the compiler
likely to notice the error? What sort of d<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>