PRINCIPLES OF
LANGUAGE DESIGN
i]

14.1 GENERAL REMARKS

The Perfect Programming Language

It is natural to ask if there is a perfect programming language. If there is such a language,
then we should strive to identify its characteristics so that we do not waste more time on im-
perfect languages. In this section we argue that there is not, and cannot be, such a thing as
a perfect language.

What would a perfect language be? Presumably it would be a language ideally suited to
all situations—for all users, for all applications, and for all computers. This seems highly
unlikely; almost every artifact or tool exists in a variety of forms designed for different sit-
uations. Consider cameras. We have cameras for novices, cameras for professionals, black-
and-white cameras, color cameras, high-speed cameras, manual cameras, automatic cameras,
inexpensive cameras, expensive cameras, and so on. Even an artifact as simple as a shoe ex-
ists in many different designs for the various situations in which it might be used.

What leads to this diversity in all things? We can make the following general observa-
tions about the situations in which programming languages occur:

* There are many different classes of uses of programming languages.

* There are many different classes of users of programming languages.

* There are many different classes of computers on which programming languages can be
implemented.

Each of these classes has different characteristics that dictate different designs.

Consider this analogy with aircraft: A training plane must be more tolerant than other
planes of pilot error, even if this results in lower performance. A cargo plane must be able
to carry a very large load, even if this requires it to fly slower. On the other hand, a fighter
will have a lower cargo capacity but greater speed and maneuverability. Transcontinental
planes must have a high ceiling to enable them to cross mountain ranges, and so forth.

Each class of uses, users, and computers leads to design decisions that are often inap-

493

Y

494 PRINCIPLES OF LANGUAGE DESIGN

propriate for the other classes. The diversity of situations in which programming languages
are used is so great that any language that tried to accommodate all of these situations would
be a poor compromise. A much better solution is to identify broad classes of similar uses,
users, and computers and to create languages whose design decisions are optimized for these
classes. This is depicted in the following diagram:

'
- Lang. B
v .
< D Lang. D _
Lang. A ° !
° . . i
° Lang. C *
Users

We show just two of the axes—uses and users. The points represent combinations of uses
and users that frequently occur. We have drawn circles around clusters of points represent-
ing languages oriented to particular combinations of the classes. This is a better engineering
approach than either extreme: designing one language to cover all points or designing a dif-
ferent language for each point. Of course, it is a difficult engineering problem to determine
the optimal number of languages. This is particularly true since points are appearing and dis-
appearing as computer technology evolves. Indeed, languages themselves can create new
classes of users, uses, and computers. f

The Perfect Language Framework |

The arguments we have given against the possibility of a perfect language do not necessar-
ily preclude a perfect language framework. The idea of a language framework is based on
the observation that although languages may differ in their details, they are often similar in
their general structures. For example, a scientific programming language might have real, in-
teger, and complex data types, extensive array handling, and many mathematical operations.
A language for string processing might have character and string data types, a record data
type, and pattern-matching operations. Thus, each language has sets of application-oriented
data types, functions, and operators that optimize it for a particular class of uses. The choice
of these application-oriented parts also affects the class of users and computers for which
the language is appropriate.

Notice that the application-oriented features are embedded in a matrix of application-
independent facilities, such as definite and indefinite iterators, selectors (case- and if-state-
ments), function and procedure declarations, and blocks. These are the same in many lan-
guages regardless of the application-oriented facilities provided. They are also relatively in-
dependent of the particular characteristics of the different classes of uses, users, and
computers. Such a collection of application-independent facilities is called a language frame-
work.

Can there be a perfect language framework? Our previous argument does not rule this
out since the framework is independent of most of the situation-specific details. Therefore,
there is some hope that a small number of simple, broadly applicable facilities can be com-

. -)

14.2 PRINCIPLES 495

bined into a language framework that can be used as the basis for a number of more spe-
cialized languages. Some computer scientists believe that function-oriented languages simi-
lar to LISP may provide this framework. Others think that object- or logic-oriented pro-
gramming is a better choice. This question remains an important research area.

B Exercise 14-1*: Write a report defending function-, object-, or logic-oriented pro-
gramming as a basis for a universal language framework. As an alternative, write a re-
port defending the thesis that there can be no universal language framework.

<y

14.2 PRINCIPLES

“Knowing how to apply maxims cannot be reduced to, or derived from, the acceptance
of those or any other maxims.”
—Gilbert Ryle

In this section we collect the language design principles that have been illustrated through-

ovs this book. Before presenting dhem, however, it is well o cunstder fiow dicy sfould oc
interpreted. For example: Are they ironclad laws, never to be violated? Do they form a mu-
tually consistent set of language design axioms? Do they constitute an algorithm, or at least
a set of formal constraints, for language design? The answer to all these questions is no.

First, observe that these principles are not independent; some of them are corollaries of
the others. For example, the Zero-One-Infinity Principle is a corollary of the Regularity Prin-
ciple since one way to make a language more regular is by limiting the numbers in its de-
sign to zero, one, and infinity. Similarly, the Orthogonality Principle is a corollary of the
Simplicity Principle since an orthogonal design is usually a simpler design. We have included
these derivative principles because they focus on important special cases of the other prin-
ciples.

These principles are sometimes contradictory; if one is satisfied, it may mean that an-
other cannot be satisfied. For example, strong typing satisfies the Security Principle but at
the cost of adding to the complexity of the language (thus violating the Simplicity Principle)
and adding to the overall cost of the implementation (thus violating the Localized Cost Prin-
ciple). Combinations of facilities that are not very useful may result from obeying the Or-
thogonality Principle, but it would be a violation of the Simplicity Principle to exclude them.

How are we supposed to use a collection of nonindependent, sometimes contradictory,
design principles? This is the difficult part of language design. It is also the difficult part of
any engineering design process. For example, one principle of airplane design might be to
minimize weight; another might be to maximize safety. Yet we must sometimes increase
weight to increase safety. The trade-offs among the various goals of design, as embodied in
these principles, require great sensitivity to the intended use of the artifact.

In many engineering disciplines, at least some of these trade-offs can be made quanti-
tatively. In other words, we can compute how much a certain safety feature will weigh and
perhaps make up for the extra weight by leaving something else out (say, a few passengers).
For the most part, there are (as yet) no useful quantitative measures of the properties of lan-
guages. A number of computer scientists are working in this area, so we can hope that even-
tually at least some parts of the language design process will be quantifiable. On the other

496 PRINCIPLES OF LANGUAGE DESIGN

hand, we have seen (Section 4.3) that in other engineering disciplines, aesthetic principles
may be a more effective guide to good engineering design than extensive mathematical analy-
sis. Either way, in the meantime we must make our trade-offs on the basis of qualitative
judgments according to principles such as these:

1. Abstraction: Avoid requiring something to be stated more than once; factor out the re-
curring pattern.

2. Automation: Automate mechanical, tedious, or error-prone activities.

3. Defense in Depth: Have a series of defenses so that if an error is not caught by one, it
will probably be caught by another.

<« 4. Elegance: Confine your attention to designs that look good because they are good.

S. Impossible Error: Making errors impossible to commit is preferable to detecting them
after their commission.

6. Information Hiding: The language should permit modules designed so that (1) the user
has all of the information needed to use the module correctly, and nothing more; and (2)
the implementor has all of the information needed to implement the module correctly,
and nothing more.

7. Labeling: Avoid arbitrary sequences more than a few items long. Do not require the
user to know the absolute position of an item in a list. Instead, associate a meaningful
label with each item and allow the items to occur in any order.

8. Localized Cost: Users should pay only for what they use; avoid distributed costs.

9. Manifest Interface: All interfaces should be apparent (manifest) in the syntax.

10. Orthogonality: Independent functions should be controlled by independent mechanisms.

11. Portability: Avoid features or facilities that are dependent on a particular computer or
a small class of computers.

12. Preservation of Information: The language should allow the representation of infor-
mation that the user might know and that the compiler might need.

13. Regularity: Regular rules, without exceptions, are easier to learn, use, describe, and im-
plement.

14. Responsible Design: Do not ask users what they want; find out what they need.

15. Security: No program that violates the definition of the language, or its own intended
structure, should escape detection.

16. Simplicity: A language should be as simple as possible. There should be a minimum
number of concepts, with simple rules for their combination.

17. Structure: The static structure of the program should correspond in a simple way to the
dynamic structure of the corresponding computations.

18. Syntactic Consistency: Similar things should look similar, different things different.

19. Zero-One-Infinity: The only reasonable numbers are zero, one, and infinity.

B Exercise 14-2*: State and illustrate at least one language design principle other than
those listed above. Describe a situation under which it would be desirable to violate your
principle.

1. We have shown that certain of the principles are corollaries of certain of the other princi-
ples and that certain principles contradict other principles. Explore in detail the interrela-
tionships of the principles, explaining which are corollaries and which are contradictories.

S

EXERCISES 497

2. Write a report on “Beyond Programming Languages” by Terry Winograd (Commun. ACM
22,17, July 1979).

3. Write a report on “The Future of Programming” by Anthony Wasserman and Steven Gutz
(Commun. ACM 25, 3, March 1982).

4*. The main ideas of functional programming had been set out by Peter Landin by 1966; the
main ideas of object-oriented programming appear in Simula 67, designed in 1967, and
Smalltalk was implemented by 1972; the first logic-programming system was also opera-
tional by 1972. Thus the foundations of the three major-fifth-generation paradigms were laid
by 1972. Defend or attack the following claim: “There have been no fundamentally new
programming language ideas since 1972.”

5**, Design a programming language.

