"O FUNCTIONAL PROGRAMMING:

LISP

10.1 DESIGN: CONTROL STRUCTURES

Atoms Are the Only Primitives

LISP is remarkable for the simplicity of its basic control structures. The only primitive con-
trol structures are literals and unquoted atoms since these are the only constructs that do not
alter the control flow. Literals represent themselves: For example, numbers and quoted atoms
and lists are names for themselves. Unquoted atoms are bound to either functions (if they
have the expr property) or data values (if they have the apval property). There are only
two basic control-structure constructors: the conditional expression and the recursive appli-
cation of a function to its arguments.

The Conditional Expression Is a Major Contribution

In the historical discussion of LISP, we mentioned that LISP was the first language
to contain a conditional expression. This was an important idea since it meant that
everything could be written as an expression. Previous languages, such as FORTRAN,
and some newer languages, such as Pascal, require the user to drop from the expres-
sion level to the statement level in order to make a choice. Languages that force ex-
pressions to be broken up in this way can often make programs less readable. Math-
ematicians have recognized for many years the value of conditional expressions and
have often used them. For example, here is a typical definition of the signum (sign)

function:
[, ifx>0
sg(x) = 0, ifx=0
-1, ifx<O0

343

344 FUNCTIONAL PROGRAMMING: LISP /

In LISP this function is defined:

(defun sg (x)

(cond ((plusp x) 1)
((zerop x) 0)
((minusp x) —1))) |

The LISP conditional has more parentheses than are really necessary; instead of
(cond (p1 e1) ... (pn €n))

it would have been quite adequate if LISP had been designed to use

(cond p1 €1 ... DPn €n)

However, the latter notation complicates the interpreter slightly and, as we said in the be-
ginning of Chapter 9, nobody imagined that the S-expression notation would become the
standard way of writing LISP programs. For convenience, Common LISP provides (if p
e1 e;) as a synonym for the two-branch conditional (cond (pe;) (t ez))

The Logical Connectives Are Evaluated Conditionally

McCarthy took the conditional expression as one of the fundamental primitives of LISP.
Therefore, it was natural to define the other logical operations in terms of it. For example,
the function (or x y) has the value t (true) if either or both of x and y have the value t; in
any other case, or has the value nil (false). Another way to say this is if x has the value
t, then the or has the value t, otherwise the or has the same value as y. Write out a truth
table for each of these definitions of or to see that they are equivalent. The latter definition
allows or to be defined as a conditional:

(orxy) = (ifxty)

B Exercise 10-1: Define the and function in terms of the conditional.
B FExercise 10-2: Define the not function in terms of the conditional.
B FExercise 10-3: Use truth tables to show that the conditional definitions of and, or,

and not give the same results as the usual definitions.

These definitions of the logical connectives have an important property they do not possess
in their usual interpretation. That is the fact that their operands are evaluated sequentially.
To see the importance of this, consider the following example. Suppose we wish to know if
a list either has key as its first element or is null. We might write this as

(or (eqg (car L) ‘key) (null L))

This is incorrect, however, since if L is null, it is an error to apply (car L). In most lan-
guages (e.g., Algol and Pascal), the only way around this problem is to write a conditional

10.1 DESIGN: CONTROL STRUCTURES 345

instead of the or (and in Pascal, without a conditional expression, it is quite awkward). In
LISP the solution is to write the operands to or in the opposite order:

(or (null L) (eq (car L) ’'key))
Why does this work? This application is equivalent to
(if (null L) t (eq (car L) ’key))

That is, first evaluate (null L); if it is true, then we know the result is true, so we return
t without ever having attempted to evaluate (eq (car L) ‘key). The latter expres-
sion is evaluated only if (null L) is false, in which case the application is valid since L

=is guaranteed to have at least one element.
This interpretation of the logical connectives is known as the conditional or sequential

interpretation, as opposed to the strict interpretation, which always evaluates both argu-

ments. The more “lenient” sequential interpretation of the connectives often simplifies the

definition of functions, although it may make it more difficult to prove things about them.
LISP allows both and and or to have more than two arguments. Therefore,

fand p; p2 ... D»)

evaluates the p; in order. As soon as one returns false (i.e., nil), the and immediately re-
turns false without evaluating the rest of the arguments. Similarly,

(or p1 P2 ... Dn)

evaluates the arguments until it encounters one that returns true.

Iteration Is Done by Recursion

Except for the conditional, LISP needs none of the control structures found in conventional

programming languages.! In particular, all forms of iteration are performed by recursion. We

have seen this in previous examples, such as the append and getprop functions.
Consider the getprop function:

(defun getprop (p x)
(if (eqg (car x) p)
(cadr x)
(getprop p (cddr x))))

This is analogous to a while-loop in a Pascal-like language; the function continues to call it-
self recursively until a termination condition is satisfied.

Although Common LISP has an analog of a for-loop, it generally does not need one. In
most programming languages, for-loops are used to control an index for array subscripting.

! This is not entirely true. Most LISPs have a vestigial imperative facility (the prog feature) complete with
gotos and assignment statements. Since this facility is conventional and uncharacteristic of LISP, we will not

discuss it further.

s
¢

346

FUNCTIONAL PROGRAMMING: LISP

In LISP it is more common to write a recursive procedure that performs some operation on
every element of a list. For example, suppose we need to add all of the elements of a list of
numbers, which is the kind of thing we would use a for-loop for in Pascal. In LISP we can
write a recursive function plus-red that does the plus reduction of a list:

(defun plus-red (a)
(if (null a)
0
(plus (car a) (plus-red (cdr a)))))

Here are two example applications of plus-red:

(plus-red ‘(12 3 4 5))
15

(plus-red (3 3 3 3))
12

Trace through the execution of these examples to be sure that you understand them.
Notice that plus-red is quite general: It works on any list of numbers, regardless of
its size. There is no “upper-bound” written into the program as there would be in most lan-
guages, and there is no explicit indexing that can go wrong. Thus it obeys the Zero-One-
Infinity Principle.
The plus-red function is an example of a reduction, that is, the use of a binary func-
tion to reduce a list to a single value. The next example we will see is an example of map-

ping a function, that is, applying a function to every element of a list and returning a list of
the results.

Suppose we want to add one to each element of a list. This can be done by add1-map:

(defun addl-map (a)
(if (null a)
nil
(cons (addl (car a)) (addl-map (cdr a)))))
For example,

(addl-map ‘(1 9 8 4))
(2 10 9 5)

Again, there are no explicit bounds, no controlled variables, and no indexing.

We have seen an example where we took a list and reduced it to one value. We have
also seen an example where we took a list and mapped it into another list of the same size.
Next we will see an example of filtering a list, that is, forming a sublist containing all the
elements that satisfy some property. In this case, we want to form a list containing all of the
negative elements of the given list. That is,

(minusp-£fil ‘(2 -3 7 -1 -6 4 8))
(-3 -1 -6)

The function to do this is straightforward; we just make the consing of each element condi-
tional on whether it is negative:

10.1 DESIGN: CONTROL STRUCTURES 347

(defun minusp-fil (a)
(cond ((null a) nil)
((minusp (car a))
(cons (car a) (minusp-fil (cdr a))))

(t (minusp-fil (cdr a)))))

All of the examples we have seen so far are the equivalent of a single loop; next we will
see the equivalent of two for-loops, one nested in the other. Suppose we want a function
all-pairs that forms all pairs that can be formed from the elements of two lists. For ex-

ample,

(all-pairs ’(a b c) "(x y z))
((a x) (ay) (a z) (b x) (by) (b z) (c x) (c y) (c z))

You may recognize this as the Cartesian product of the two lists. In a conventional lan-
guage, this would be accomplished with two nested loops, one iterating over the ele-
ments of the first list and the other iterating over the elements of the second list. The
same is accomplished in LISP with two nested recursive functions: all-pairs will
do the outer recursion over the elements of the first list and dist1 (“distribute from
the left”) will do the inner iteration over all of the elements of the second list. For ex-

ample,

(distl ‘b "(x y z))
(b x) (b y) (b z))

Here are the definitions:

(defun all-pairs (M N)
(if (null M)
nil
(append (distl (car M) N)
(all-pairs (cdr M) N))))
(defune distl (x N)
(if (null N)
nil
(cons (list x (car N))
(distl x (cdr N)))))

(The 1ist function makes a list out of its arguments.)

B Exercise 10-4: Write a function times-red that computes the times reduction of a
list. For example,

(times-red ‘(1 2 3 4))
24

What should be the result of (times-red ()) for the natural recursive definition to
work?

348 FUNCTIONAL PROGRAMMING: LISP

B Exercise 10-5: Write an expression that computes the product of adding 1 to each el-
ement of a list. For example,

(times-addl ‘(1 2 3))
24

since 24 = (1 + 1) X (2 + 1) X (3 + 1). Note: You do not have to define any functions
beyond those already defined.

B Fxercise 10-6: Write a function append-red, for example,

(append-red ’((to be) (or not) (to be)))
(to be or not to be)

B Exercise 10-7: Write a function zerop-map that returns a Boolean list representing
whether the corresponding elements of the argument list are zero (as tested by zerop).
For example,

(zerop-map ‘(4 7 0 3 -2 0 1))
(nil nil t nil nil t nil)

B Exercise 10-8: Write a plus-map function that adds the corresponding elements of
two lists and returns a list of the results. For example,

(plus-map ‘(1 2 3 4) (1 9 8 4))
(2 11 11 8)

Notice that this is different from the other mapping functions because plus is binary
whereas add1l, zerop, and so forth are unary. What will you do if the lists are of un-
equal length? Justify your answer.

W FExercise 10-9: Trace in detail the following application of all-pairs:

(all-pairs ’ (Bob Ted) ' (Carol Alice))
((Bob Carol) (Bob Alice) (Ted Carol) (Ted Alice))

Hierarchical Structures Are Processed Recursively

Most of the uses of recursion we have seen so far could have been written iteratively (e.g.,
using a while-loop) almost as easily. Next, we will discuss the use of recursion to process
hierarchical structures that would be difficult to handle iteratively.

As an example we will design the equal function, which determines whether two ar-
bitrary values are the same. How is this different from the eq primitive? Recall that the eq
primitive works only on atoms; its application to nonatomic values is undefined (in most
LISP systems). The equal function will do much more: It will tell us if two arbitrary list
structures are the same. For example,

(equal "(a (b c) d (e)) ’‘(a (b c) 4 (e)))
= |
(equal ‘(to be or not to be) ’‘((to be) or (not (to be)))) ;

10.1 DESIGN: CONTROL STRUCTURES 349

(equal ’(1 2 3) ‘(3 2 1))
nil

(equal ‘Paris ' (Don Smith))
nil

(equal ‘Paris ’'London)
nil

(equal nil ‘(be 2))

nil

The equal function is applicable to any two arguments (see, however, p. 350).

- We will design the equal function in the same way we have designed other recursive
functions: by solving those cases that are easy and then reducing the complicated cases to
the easy cases. What are the easy cases? Atoms can be handled immediately since they can
be compared with the eq function. Therefore, if both x and y are atoms, then (equal x y)
reduces to (eqx y) . If either x or y is an atom and the other is not, then we know they can-
not be equal. This can be summarized as follows:

if x and y are both atoms, then
(equal xy) = (eq xy)
if x is an atom and y isn’t,
or y is an atom and x isn’t,
then (equal xy) = nil

These two can be combined using LISP’s sequential and:
(and (atom x) (atom y) (eqg x y))

Because of the sequential interpretation, the eq application will not be evaluated unless both
x and y are atoms. If either is not an atom or they are not the same atom, then the above ex-
pression returns false. Notice that this also takes care of the case where either x or yisnil
since in LISP nil is considered an atom.

Let’s consider the case where neither x nor y is an atom. Clearly, we want to compare
x and y element by element. That is, we want to compare (car x) and (car y) to see that
they are equal; if they are, we can eliminate them and call equal recursively:

(equal (cdr x) (cdr y))

This is guaranteed eventually to reduce at least one of x or y to the null list, which is the
case we have already handled. But how are we to compare (car x) and (car y)? We
cannot use the eq function since it is defined only for atoms and (car x) or (car y)
might be a list. What is needed is a function that will compare either atoms or lists for
equality, and this is the very equal function we are defining. Therefore, we will call
equal recursively on the cars of x and y. This solves the problem when x and y are both
lists:

if x and y are both lists then,
(and (equal (car x) (car y))
(equal (cdr x) (cdr y)))

350

FUNCTIONAL PROGRAMMING: LISP

In this case, the sequential and increases the efficiency of the program since if the cars of
the lists are not equal, the program will not bother comparing the cdrs of the lists.

We now have two mutually disjoint cases since either at least one of x and y is an atom
or they are both not atoms. Since we have all of the cases covered, we can combine them
into a definition of the equal function:

(defun equal (x y)
(or (and (atom x) (atom y) (eq X v))
(and (not (atom x)) (not (atom v))
(equal (car x) (car v))
(equal (cdr x) (cdr y)))))

This function (which is provided by all LISP systems) is quite complicated to define with-
out recursion. If you do not believe it, try it!

B Exercise 10-10: Write a recursive function count to count the number of atoms in a
list no matter what their level of nesting. For example,

(count ‘(a b (c 4) ((99)) nil t))
7

B Exercise 10-11: Explain the behavior of equal when applied to circularly linked lists
(i.e., lists pointing to a part of themselves).

Recursion and Iteration Are Theoretically Equivalent

The difficulty of programming a function such as equal without recursion might lead us
to suspect that recursion is more powerful than iteration, that is, that there are things that can
be done recursively that cannot be done iteratively. In fact, this is not the case. Consider the
stack implementation of recursion that we discussed in Chapter 6. There we saw that all the
information relevant to a procedure call, such as its parameters, local storage, and result,
could be maintained in a stack of activation records. In theory, any recursive program can
be converted into an iterative program by maintaining such a stack. This is effectively what
an Algol or Pascal compiler does; it converts recursion into iteration. Although this reduc-
tion is a theoretical possibility, it is not practical to do by hand in most cases, since the re-
sulting program is so much more complicated. From the programmer’s viewpoint, recursion
is more powerful than iteration.

Since recursion can in principle be reduced to iteration, we might wonder if iteration is
more powerful than recursion. This is also false. Earlier in this section, we showed how a
number of common while-loop- and for-loop-like structures could be expressed, although
you can probably see the general idea. More general structures expressible with gotos can
also be reduced to recursion, but, like the reduction of recursion to iteration, this is not a re-
sult of much practical value.?

2 The theoretical equivalence of iteration and recursion is explored in more detail in MacLennan (1990), Sec-
tion 3.9.

10.1 DESIGN: CONTROL STRUCTURES 351

B Exercise 10-12: Write the equal procedure iteratively, that is, using while-loops.
Maintain your own stack of intermediate results.

Functional Arguments Allow Abstraction

Earlier in this section, we saw a definition of the add1-map function, which applies add1
to each element of a list. In an exercise you programmed a zerop-map function that ap-
plies zerop to each element of a list. Notice that these functions were identical except for
the particular function, addl or zerop, applied. Mapping any other unary function (e.g.,
not) would also fit the same pattern. We can see here an application of the Abstraction Prin-
“Ciple: Since this same pattern keeps recurring, it is to our benefit to abstract it out and give
it a name. This effectively raises the level at which we are programming and decreases the
chances of error. If we repeat essentially the same thing over and over, there is a tendency
to become careless and make a mistake. It is much better to do the thing once in a general

way that can be used over and over.
Thus, we will define a function mapcar that applies a given function to each element

of a list and returns a list of the results. It is not hard to see how to do this since the pattern
of the recursion is just an abstraction from the patterns of add1l-map and zerop-map:

(defun mapcar (f x)
(if (null x)
nil
(cons (f (car x)) (mapcar f (cdr x)))))

The function is called mapcar because it applies £ to the car of the list each time. Most
LISP systems provide mapcar for the user, although on some the order of the arguments is

reversed.
With this definition of mapcar our previous examples can be expressed without hav-

ing to write a recursive definition:

(mapcar ‘addl ‘(1 9 8 4))
(2 10 9 5)

(mapcar ’‘zerop ‘(4 7 0 3 -2 0 1))
(nil nil t nil nil t nil)

(mapcar ‘not (mapcar ‘zerop ‘(4 7 0 3
(t £t nil t t nil t)

-2 0 1)))

B Exercise 10-13: Notice that as we have defined the mapcar function, it will not work
for binary functions so we cannot use it to write plus-map. Write a function mapcar?2

that can be used for this purpose. For example,

(mapcar2 ‘plus ‘(1 2 3 4) (1 9 8 4))
(2 11 11 8)
By using certain features of LISP that we will not discuss here, it is possible to define a
mapcar function that takes a variable number of arguments so that it will work with any
function. The mapcar provided by some LISPs works in this way.

352

FUNCTIONAL PROGRAMMING: LISP

B Exercise 10-14: Define a function filter such that (filter p x) is a list com-
posed of just those elements of x that satisfy the predicate p. For example,

(filter ‘minusp ' (2 -3 7 -1 -6 4 8))
(-3 -1 -6)
B Fxercise 10-15: Define the reduce function that reduces a list by a given binary func-
tion.? For example,

(reduce ’‘plus O (12 3 4 5))
15

In general, (reduce fa x) means (fx1 (fxz .. fxna)).

® Exercise 10-16: Show that (reduce ’cons b a) is equivalent to (append a b).

Functional Arguments Allow Programs To Be Combined

We have seen that one of the advantages of functional arguments is that they suppress de-
tails of loop control and recursion. Next we will see that they also simplify the combination
of already implemented programs. The first example we will consider is the inner product
of two lists.

The inner product of two lists is defined to be the sum of the products of the corre-
sponding elements of the two lists:

n
uv= 2 u; v
i=1

The mapcar2 function that we defined in the preceding exercises can be used to take the
products of the corresponding elements:

(mapcar2 ’‘times u V)
(w1 wa ... wy)

where each w; = u;v;. Therefore, the inner product is just the plus reduction of the prod-
ucts:

(define ip (u v)
(reduce ’‘plus 0 (mapcar2 'times u v)))

For example,
(ip (1 2 3) '(-2 3 4))
16

@ FExercise 10-17: Show that ip computes the result above by tracing its execution.

3 This reduce function is similar, but not identical, to the reduce of Common LISP.

10.1 DESIGN: CONTROL STRUCTURES 353

B Exercise 10-18: Define, without explicit recursion, a function f that computes
n
fluy) = H; (i +vy)
=

B Exercise 10-19: Define, without explicit recursion, a function pairlis that computes
(pairlis uvw) =
((urv1) (uava) ... (UpVm) WiWy..w,)

in which u and v are m element lists and w is an n element list. That is, the function of
(pairlis u v w) is to pair up corresponding elements of « and v and append them to the

front of w. Hint: (1ist u; v;) returns the pair (u; v;).

Lambda Expressions Are Anonymous Functions

Suppose that we need to cons the value bound to val onto all the elements of a list L; this
is an obvious application for mapcar. We can do this by writing (mapcar ‘consval

L) but only if we have already defined
(defun consval (x) (cons val x))

It is inconvenient to give a name to a function every time we want to pass it to mapcar (or
to reduce, etc.). It clutters up the name space with short function definitions that are used
only once. An obvious solution would be just to pass the function’s body, (cons val x),

to mapcar:
(mapcar ' (cons val x) L)

The trouble with this is that it’s ambiguous; we do not know which names are the parame-
ters to the cons and which are globals. That is, (cons val x) could equally well rep-
resent any of the following functions:

(defun £f0 () (cons val x))
(defun f1 (x) (cons val x))
(defun f2 (val) (cons val x))
(defun £f3 (val x) (cons val x))
(defun f4 (x val) (cons val x))

Notice that they all have exactly the same body— (cons val x). What is required is
some way of specifying which of the names in (cons val x) are parameters and which

are global variables.
A mathematical theory called the “lambda calculus” provides a solution to this prob-

lem.* It supplies a notation for anonymous functions, that is, for functions that have not been
bound to names. LISP uses the notation

(lambda (x) (cons wval x))

4 An introduction to the lambda calculus can be found in MacLennan (1990), Part II, and in many other

books.

354 FUNCTIONAL PROGRAMMING: LISP

to mean that function of x whose value is (cons val x). This is equivalent to the func-
tion £1. If £2 were the function we wanted, we would write

(lambda (val) (cons wval x))

These lambda expressions are values that can be manipulated like any other LISP lists; in
particular, they can be passed as parameters.
Now we can solve our original problem. To cons val onto each element of a list L we

write
(mapcar ’(lambda (x) (cons val x)) L)
- Similarly, to double all of the elements of L, we write

(mapcar ’(lambda (n) (times n 2)) L)

Next we will consider a more complicated example of the use of lambda expressions.
Recall that the application (distl x N) returns a list

((x Ny) (x N7) ... (xNp))

This is clearly a case of mapping a function on the list N, the function being that which takes
any y into the pair (x y). Thus, the function we want to map is

(lambda (y) (list x vy))

(The 1ist function makes a list out of its arguments.) Hence, the definition of dist1 is

(defun distl (x N)
(mapcar '’ (lambda (y) (list x vy))
N))

Now let’s consider the all-pairs function. First, it is necessary to apply (distl
M; N) for each element M; of M; this will give us a list L of the form

(LWL, .. L)
where each L; is of the form
((M;Ny) (M;Ny) ... (M; N,))

The result we want, (all-pairs M N), is the result of appending all of the L;, that is,
the append-reduction of L:

(reduce ’'append nil L)

The list L results from forming a list of the results of (distl M; N) for each element of
M. This can be accomplished with mapcar:

L = (mapcar ' (lambda (x) (distl x N)) M) i

All of these results can be assembled into the following definition of all-pairs:

10.1 DESIGN: CONTROL STRUCTURES 355

(defun all-pairs (M N)
(reduce ’append nil
(mapcar ‘ (lambda (x) (distl x N)) M)))
(defun distl (x N)
(mapcar ‘(lIambda (y/ (Iist x y/]
N))

Actually, the definition of dist1 is not necessary; it too can be replaced by a lambda ex-
pression:

(defun all-pairs (M N)
(reduce ‘append nil
(mapcar '’ (lambda (x)
(mapcar ‘(lambda (y) (list x y))
N))

<

M)))

This is probably carrying things too far, however. Even if the dist1 function is not used
anywhere but in all-pairs, it is probably a good idea to give it a name so that the defi-
nition of all-pairs does not get too confusing. LISP expressions are like mathematical
formulas: They must be kept small to stay readable.

B Exercise 10-20: Use a lambda expression to write an application to square each ele-
ment of a list L.

B Exercise 10-21: Use lambda expressions, append, cons, and reduce to reverse a
list L.

Functionals Can Replace Lambda Expressions

We have seen that in many cases the use of functional arguments allows control-flow pat-
terns to be abstracted out, given names, and used over and over again. We have also seen
that the use of lambda expressions can often eliminate otherwise useless function bindings.
Recently, programmers have begun using these ideas more systematically, a practice called
Junctional programming. A functional is defined to be a function that has either (or both) of
the following: (1) one or more functions as arguments; (2) a function as its result.> We have
already seen several examples of functions that have functions as arguments, for example,
mapcar, reduce, and filter.

Let’s consider a few examples from earlier discussions. In our discussion of lambda ex-
pressions, we wanted to map onto a list a function that consed val onto its argument. We
did this by mapping the lambda expression

(lambda (x) (cons val x))

5 MacLennan (1990) is a comprehensive introduction. The term “functional” is used in a somewhat differ-
ent sense in mathematics.

356 FUNCTIONAL PROGRAMMING: LISP

In the all-pairs example, we performed a similar action—mapping across a list a func-
tion that formed a list with x:

(lambda (y) (list x vy))

In each case we turned a binary function (e.g., cons) into a unary function by binding one

of its parameters to a value. In the first case, the first argument of cons was bound to val,

and in the second case, the first argument of 1ist was bound to x. Since we have changed

one function into another function, we are really doing what a functional does—operating

on a function to return another function. We can automate this process (applying the Ab-

straction Principle again) by defining a functional bu that converts a binary function into a
< unary function. In other words, instead of

(lambda (x) (cons val X))
we will write

(bu ’‘cons val)

In general, (bu fx) binds the first argument of f to x.
To define bu we have to be very clear about its effect. The result of (bu fx) is a unary
function that, when applied to an argument y, returns (fx y). In other words,

((bu fx) y) = (fxy) %’

[Notice that the function being applied to y is the function returned by (bu fx) !] That func-
tion of y whose value is (fx y) is just

(lambda (y) (fxy))

The definition of bu then follows immediately (the application of function is discussed
in Section 10.2 on Name Structures; for now just interpret it as a sign that a function is be-
ing returned):

(defun bu (f x) (function (lambda (y) (f x vy))))

The mapping onto L of the function to cons val onto a list can now be written with-
out the use of lambda expressions or auxiliary function definitions:

(mapcar (bu ’‘cons wval) L)
Similarly, the definition of dist1 can be simplified:
(defun distl (x N) (mapcar (bu ‘list x) N))

Notice that the use of the bu functional has eliminated an entire class of errors—mistakes
in writing a lambda expression that converts a binary function to a unary function. This is
one of the principal values of abstraction.

6 Some LISP dialects, including Common LISP, do not permit using a function call as the function in an-
other function call. In these dialects it would be necessary to write (funcall (bufx) y).

I

= could then use bu.

10.1 DESIGN: CONTROL STRUCTURES 357

There is also a lambda expression in the definition of all-pairs:
(lambda (x) (distl x N))

Here again a binary function is made into a unary function by fixing one of its parameters.
In this case, however, it is the second parameter that is being fixed. The bu functional will
not accomplish this since it fixes the first parameter. Of course, it would be no trouble to
define a new functional, for example bu2, that fixes the second argument of a binary func-
tion.

Continuing this process would lead to a proliferation of functionals: bu2, bu3, and so
on. We would not need this bu2 functional if the arguments to distl were reversed; we

In functional programming it is quite common to need to reverse the arguments to a bi-
nary function, so the best solution seems to be to define a functional rev such that (rev
f) is f with its arguments reversed. In other words, (rev f) applied to x and y yields (fy
x). Thatis, (rev f) is that function of x and y whose value is (fy x):

(rev f) = (lambda (xy) (fyx))
The LISP definition follows easily:
(defun rev (f) (function (lambda (x y) (f vy x))))

Now, fixing the second argument of dist1 is the same as fixing the first argument of (rev
"distl), so the second argument of dist1 can be bound to N by

(bu (rev ’‘distl) N)
With this information, the definition of all-pairs can be written:

(defun all-pairs (M N)
(reduce ’append nil
(mapcar (bu (rev ‘distl) N) M)))

We can increase the flexibility with which functions can be combined if a uniform style
is used for all functionals. We will define functional forms of mapcar, mapcar?2, and re-
duce that, like rev, take a function and return a function. For example, (map ‘addl)
will be a function that adds 1 to each element of a list.” In other words

((map ‘addl) L) = (mapcar ‘addl L)

Another way to say the above is that (map f) is that function that takes any list L into the
result of mapping f onto that list:

(defun map (f) (function (lambda (L) (mapcar f L))))

The value of these functional operators is their combinatorial power, and for this rea-

son they are often called combinators or combining forms. They make it simple to combine

7 This map is different from the map in most LISP dialects, including Common LISP.

358

FUNCTIONAL PROGRAMMING: LISP

existing programs to accomplish new tasks. For example, to define a function vec-dbl that
doubles all of the elements of a vector, we can use® (map (bu ’‘times 2)):

(set ’'vec-dbl (map (bu ‘times 2)))

Exercise 10-22: Define the functional bu2.
@ Exercise 10-23: Define the functional dup so that (dup f) applied to xis (fx x):
((dup f) x) = (fxx)

Show that (dup ‘times) is the squaring function.

Exercise 10-24: Use functionals to define a function to square every element of a vector.

Exercise 10-25: Define a functional that returns the composition of two functions
(comp f g). That is,

((comp fg) x) = (f (gx))

Exercise 10-26: Define a functional map?2 that when applied to a binary function f re-
turns the corresponding binary map:

((map2 f) xy) = (mapcar2 fxy)

Exercise 10-27: Use functionals to define a function vec-sum that returns the sum
of two vectors represented as lists. That is, it returns a list whose elements are the sum
of the corresponding elements of the two input vectors.

Exercise 10-28: Suppose that matrices are represented by lists of lists (i.e., vectors of
vectors as in Pascal). Use functionals to define a function mat-sum that computes the
sum of two matrices by adding their corresponding elements.

Exercise 10-29: Define a functional red such that (red fa) is the f-reduction func-
tion starting with an initial value a. For example, (red ’‘plus 0) is the function that
adds the elements of a list together.

Exercise 10-30: Show that the following function computes the sum of the squares of
the elements of a list:

(comp (red ’'plus 0) (map (dup ‘times)))

Exercise 10-31: In a previous section, we defined an inner product function. Redefine
this using functionals.

Exercise 10-32: Define a functional const that returns a constant function. That is,

8 Many LISP systems, including Common LISP, will not allow a function defined by set to be applied in
the normal way. In these cases, the expr property must be defined explicitly by (putprop ‘vec-dbl
(map (bu ‘times 2)) ‘expr).

10.1 DESIGN: CONTROL STRUCTURES 359

(const k), when applied to any argument, returns k. Show that the fallawing fungtian,
computes (albeit inefficiently) the length of a list:

(set ‘length (comp (red 'plus 0) (map (const 1))))

8 Exercise 10-33*: Discuss the readability of programs that make heavy use of func-
tionals. What are the advantages and disadvantages? Suggest guidelines to improve the
readability of these programs.

Backus Developed a Functional Programming Style

In 1977 John Backus, the principal designer of FORTRAN (Chapter 2) and of the BNF no-
tation (Chapter 4), received the Association for Computing Machinery’s Turing Award.

In his acceptance speech, Backus was highly critical of contemporary programming lan-
guages. He said that they “are growing ever more enormous, but not stronger. Inherent de-
fects at the most basic level cause them to be both fat and weak.” He proposed “an alternate
functional style of programming . . . founded on the use of combining forms for creating pro-
grams.” Backus identified several areas in which programming languages could be improved.

First, he said that conventional languages have a “word-at-a-time” programming style.
We have seen this in most of the languages we have studied, where, for example, an array
is processed by performing some action on each of its elements individually, with all of the
indexing, controlled variables, and loop control this requires. We have seen an alternative
style of programming in this section. When we write (map2 'plus) to add two vectors,
we can think of the vectors as wholes rather than being concerned with the details of iterat-
ing over their elements. Operations such as mapcar and reduce deal with entire data
structures as units (although, of course, the machine will have to process all of the individ-
ual elements). Since we do not have to think about the parts of data structures, we are pro-
gramming at a higher level of abstraction. One of the earliest languages to provide facilities
like this was APL (early 1960s), which was the source for several of the functions we have
discussed.

A second major goal of Backus’s work has been to allow programs to be manipulated,
proved, and even derived, by using simple algebraic manipulations. In other words, it should
be about as simple to do things with programs as it is to do high school algebra. In this case,
though, instead of adding, subtracting, multiplying, and dividing numbers, we are compos-
ing, reversing, mapping, and reducing functions. This is also referred to as Junction-level ver-
sus object-level programming, since the programmer manipulates functions rather than ob-
Jects (i.e. data). To make these manipulations clearer, Backus introduced an algebraic notation
that makes the structure of a program clearer than the Cambridge Polish of LISP; we will
see examples later. Further, Backus observed that variables (i.e., formal parameters and Al-
gol scope rules) complicate manipulating and reasoning about programs. Therefore, another
goal of his notation has been to eliminate the need for variables: thus, his approach has some-
times been called variable-free programming. By this he did not mean just the elimination

® The history of and motivation for functional programming are discussed in more detail in MacLennan
(1990).

360 FUNCTIONAL PROGRAMMING: LISP

of alterable variables and assignment statements; all applicative languages do this. He meant,
in addition, the elimination of formal parameters. We have seen several examples of this,
such as eliminating lambda expressions and their associated variables by using the bu and
rev functionals.

Many of Backus’s functionals correspond closely to the functionals we have discussed;
they will serve as an introduction to his notation:

Name LISP Backus
application (fx) fix
e mapping (map f) aof
reduction (red fa) If
composition (comp fg) fog
binding (bufk) (bu fk)
constant (const k) k
lists (a b c d) (a,b,c,d)
built-in functions plus, times, ... +, X, .. (
selectors cdr, car, cadr, ... tail, 1, 2, ...

Notice that there is only one functional, a (meaning “apply to all”), for mapping func-
tions onto lists. Backus has avoided the need for a whole series of functionals map2, map3,
and so on, and followed the Zero-One-Infinity Principle by a simple expedient: All functions
are unary. Functions that we normally think of as having several arguments instead have
one—a list of the arguments. For example, the ‘+’ function takes a list as an argument—
the list of numbers to be added; for example,

+:(3,5) =38

Let’s work through an example. In a previous exercise, we defined an inner product
function using functionals. We will do the same thing now in Backus’s notation. The goal
is to define a function ip such that ip: (u, v) is the inner product of the two vectors u and v.
The first step is to multiply the corresponding elements of the two vectors. But without map2
how can we do this? The data structure we are given looks like this:

<< u, U, ..., un> <V1, V25 eeey vn>>

that is, a list of two lists. We need to get the corresponding u; and v; together, that is, |

(ur, v1), (U2, v2), ey (U Vi)

which is a list of two-element lists. In other words, we need to convert a 2 X n matrix into
an n X 2 matrix. For this purpose Backus provided a transpose function, trans:

trans: ((... u; ...}, oo Vi) = (s (g vy) o)

The next step is to apply the multiplication operation to each of these pairs; this is accom- r
plished with @, which corresponds to map:

o ————————.

(aX):(trans: (u, v)) = (Uv1, .., UpVy)

10.1 DESIGN: CONTROL STRUCTURES 361

To compute the inner product, we Just add up all of the products with a plus reduction, ‘/+’
(the initial value O is implicit in Backus’s notation):

ip: u, v) = (/+):((aX): (trans: (u, v)))

Recall that we want to eliminate variables; this can be done in this case with functional com-
position. Since

(fog): x = fi(g:x)
we can write the definition of the inner product:
= ip = (/+) o (aX) o trans

Notice the distinctive characteristics of this program: It has no loops, no explicit sequenc-
ing, no assignments, and no variables.

For our next example, we will consider the multiplication of two matrices. Suppose M
is an [X m matrix and N is an m X n matrix, and we want to form the product, P, an [X n
matrix. The matrix product is defined as follows:

Py =" M;Ny
j=1

The right-hand side of this should look familiar: It is just the inner product of the ith row of
M and the kth column of N. Now, the kth column of N is just the kth row of the transpose

of N. If we let
N’ = trans:N
we can see that
Py = ip: (M;, Ny')

where M; is the ith row of M and N/ is the kth row of N transpose.

How can we build up the product matrix P? Since it is structured as a list of lists, it is
reasonable to construct it by two nested mappings, the inner one constructing the individual
rows and the outer one combining these rows into the product matrix. The ith row of the

product is
P = (Py, Py, ..., Py)
That is,
P; = (ip: (M;, Ny'), ..., ip: (M;, N,,"))
It is clear that this can be produced by a map:
P; = (aip):((M;, NY'), ..., (M;, N,"))

Notice that the argument to « Ip is a list of pairs and that the first elements of all of the
pairs are the same. They can be factored out by Backus’s distribute left function, which is
defined

distl: (x, {(a, b, ..., 2)) = ((x,a), x,b), ..., (x,2))

362 FUNCTIONAL PROGRAMMING: LISP

Therefore,
P; = (a ip):(distl: (M;, N'))
= (a ip) o distl :(M;, N")
Let f = (a ip) o distl. Notice that the final matrix P is
P={(Py, Py, ..., P))
= (f{My, N'), fAM2, N'), ..., f{M;, N'))
The function f can be factored out by mapping:
P = (af):((My, N'), Mz, N'), .., (M}, N'))
Since each pair ends in N’, each can be factored out with the distribute right function:
P = (af) o distr:(M, N')

This gives us the product matrix in terms of M and N." How can we get it in terms of M and
N? For this the constructor functional can be used; it uses a sequence of functions to con-
struct a list:

[fis e fri x =12 %, v 2 X)
In our example,
(M,N') = [1, trans o 2]: {M,N)
since 1: (M,N) = M (i.e., 1 is Backus’s notation for car), and
trans o 2 : (M,N) = trans:N = N’
since 2 is Backus’s notation for cadr. Therefore, the product of M and N is

P = (af) odistro [1, trans o 2]: (M,N)
where f = (a ip) o distl

In other words, a (variable-free) program for computing a matrix product is

mat-prod = (¢ f) o distro [1, trans o 2]
where f = (a ip) o distl

One of the goals of Backus’s notation is the algebraic manipulation of programs. We
can see a simple example of that here. If we substitute the definition of f into mat-prod, we
get

mat-prod = (a ((a ip) o distl)) o distr o [1, trans o 2]
Since the doubly nested as are a little hard to read, we can use the identity
a(feg)=(af)e(ag)
to simplify it. The resulting definition of the matrix product is

mat-prod = (a « ip) ° (« distl) o distr o [1, trans o 2]

e

10.2 DESIGN: NAME STRUCTURES 363

We can analyze this program for a matrix product. Some of the operations are inherent
in the definition of a matrix product, such as the doubly mapped inner product and the trans-
position of the second matrix. Others, such as the distribute left and right operations, the se-
lectors (1, etc.), and the constructor, are taking the place of parameters. We can see this by
comparing Backus’s program with a similar LISP program:

(defun mat-prod (M N) (mapcar (bu ‘prod-row (trans N)) M))
(defun prod-row (Nt r) (mapcar (bu ‘ip r) Nt))

The doubly mapped inner product and the transpose both appear here, but the other func-
tions do not. Their purpose has been taken over by the bound variables, which are Very pow-
= erful mechanisms for rearranging the order of things.

B Exercise 10-34*: Compare the Backus and LISP programs for the matrix product. What
are their relative readability and writability? Which one do you suppose it is easier to
prove things about? Separate out details issues of the notation (such as whether we write
map or «) from more fundamental issues (such as the absence of variables).

B Exercise 10-35: Write a program in Backus’s notation to compute the mean of a list.
Assume the function ‘length’, which returns the length of a list, is available.

B Exercise 10-36: Show that the following identity is true:
[fol, go2] o [h, k] = [foh, gok]

B Exercise 10-37*: One of the advantages that Backus claims for his approach is that
there is a limited set of functionals. Since LISP allows programmers to define their own
functionals, it provides an open-ended set of functionals. Backus claims that a limited set
is better because programmers can then master their use. Discuss the advantages and dis-
advantages between limited and open-ended sets of functionals.

& Exercise 10-38*: Read Backus’s Turing Award Paper (in the August 1978 issue of the
Communications of the ACM) and discuss it, including the ampliative and reductive as-
pects of this technology (Section 1.4).

10.2 DESIGN: NAME STRUCTURES

The Primitives Bind Atoms to Their Values

As in the other programming languages we have discussed, the primitive name structures are
the individual bindings of names to their values. In LISP these bindings are established in
two ways—through property lists and through actual-formal correspondence. The former is
established by pseudo-functions such as set and defun. For example, the application

(set ’'text ’(to be or not to be))

binds text to the list (to be or not to be) by placing the apval property with
the value (to be or not to be) on the property list of text. Similarly, a defun
binds a name to a function by placing the expr property on an atom’s property list. This

364 FUNCTIONAL PROGRAMMING: LISP

property is bound to the lambda expression for the function. For example, the definition of
getprop (p. 325) is equivalent to

(putprop ’‘getprop
' (lambda (p x)
(if (eqg (car x) p)
(cadr x)
(getprop p (cddr x))))
" expr)

The set and defun pseudo-functions are analogous to the variable and procedure decla-
rations of a conventional programming language.

One important characteristic of bindings established through property lists is that they
are global. Since there is at most one instance of each distinct atom in existence at a time,
any change to the property list of an atom is visible throughout the program. The bindings
are somewhat similar to the global subprograms and COMMON variables of FORTRAN (per-
haps reflecting that LISP is almost an old as FORTRAN). We will see later that LISP also
has a name structure constructor analogous to Algol’s blocks.

Application Binds Formals to Actuals

The other primitive binding operation is actual-formal correspondence. This is very similar
to other programming languages. For example, if we define

(defun getprop (p x)
(if (eg (car x) p)
(cadr x)
(getprop p (cddr x))))

and then evaluate the application
(getprop ‘name DS)

the formal p will be bound to the atom name and the formal x will be bound to the
value of the actual DS (which happens to be a p-list representing Don Smith’s person-
nel record).

Temporary Bindings Are a Simple, Syntactic Extension

We have seen two methods of binding names to values—the definition of properties and
actual-formal correspondence. What we have not seen is a method of binding names in a lo-
cal context such as is provided by Algol’s blocks. To see the need for this, we will work out
a simple example. Suppose we want to write a program to compute both roots of a quadratic
equation. They are defined by the well-known equation

—b = Vb? — 4ac
2a

R

r, =

10.2 DESIGN: NAME STRUCTURES 365

We want to define a function roots that returns a list containing the two roots. The gen-
eral form of this function could be

(defun roots (a b c¢) (list r r))

where r; and r; are expressions for computing the two roots. When these expressions are sub-
stituted in the above formula, we end up with a rather large, unreadable function definition:

{defun roots (a b c)

(list (quotient (plus (minus b)
(sgrt (difference (expt b 2)
(times 4 a c))))

(times 2 a))

(quotient (difference (minus b)
(sgrt (difference (expt b 2)
(times 4 a c))))

(times 2 a))))
Using the symbolic operator names provided by Common LISP and some other dialects is
little improvement:

(defun roots (a b c)

(list (/ (+ (- b) (sart (- (expt b 2) (* 4 a c))))
(* 2 a))
(/ (= (= b) (sgrt (- (expt b 2) (* 4 a c))))
(* 2 a))))

One reason for this unwieldy expression (aside from the Cambridge Polish notation) is that

the large expression corresponding to

Vb? — 4ac

is repeated in each of the expressions r; and r,. The usual way to avoid writing the same ex-
pression several times is to give it a name. For example,

Let d = Vb2 — 4ac
ri=(=b+ d)2a
r,=(=b — d)2a
This obeys the Abstraction Principle, which says that an expression is more readable if the

common parts are factored out.

How can we use the Abstraction Principle to improve our roots definition? What we
need to do is bind a name (e.g., d) to the common subexpression just long enough to eval-
uate the expressions r; and r; for the two roots. The only mechanism we have seen for tem-
porarily binding a name to a value is actual-formal correspondence. To use this, however,
we will have to define an auxiliary function (e.g., roots-aux) to bind the formal d. This

is what our definitions might look like:

(defun roots—-aux (4)
(list (quotient (plus (minus b) d)

366

FUNCTIONAL PROGRAMMING: LISP

(times 2 a))
(quotient (difference (minus b) d)
(times 2 a))))

(defun roots (a b c¢)
(roots-aux (sgrt (difference (expt b 2)
(times 4 a c)))))

Notice that we have not explicitly passed a and b to roots-aux; this is so because LISP
functions are called in the environment of the caller, the roots function, in this case. This
is discus<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>