30 THE BEGINNING: PSEUDO-CODE INTERPRETERS

® Exercise 1-42*: Modify the loader to build a symbol table for the variables and to ini-
tialize the Data array. Modify the interpreter to use these symbolic variable numbers.
Include the error-checking facilities described above.

® Exercise 1-43*: Propose a debugging aid based on symbolic variable numbers and de-
scribe its implementation in detail.

The Ideas Presented Above Are Easily Extended
- to a Symbolic Pseudo-Code

The provision of symbolic numbers for variables and statement labels has gone a long way
toward making our pseudo-code easier to use. It is still necessary for users to remember the
relationship between their variables and the numeric tags they invent. This is an error-prone
process since the programmer has to remember whether —2 or -3 is divide, whether 111 is
the index or the temporary, and so on. The programmer will probably keep lists of the cor-
respondence between these codes and the abstractions they represent, such as the list of op-
eration codes in Figure 1.4. Therefore, we can eliminate this source of errors by maintain-
ing this correspondence for the user. This was done in many of the early pseudo-codes when
input-output equipment that could handle alphabetic characters became available.

® Exercise 1-44: What principle is illustrated by making the computer keep track of the
correspondence described above?

How will we go about designing a symbolic pseudo-code? First, let’s consider the syn-
tax of (way to write) the variables. Currently, the interpreter looks up a three-digit sym-
bolic variable number in the symbol table in order to find the absolute location of that vari-
able in the Data array. If we replace this three-digit number with a three-character
alphanumeric name, then we will be able to use the same lookup process while allowing
the programmer to pick more mnemonic variable names. The programmer will be able to
use a name like AVG instead of an absolute location (003) or an arbitrary numeric tag (123).
The same can be done for the operation codes, using mnemonic words like ADD and READ
instead of codes like +1 and +8. The loader will have to look these up in a symbol table
and replace them by their codes. Therefore, a typical statement in this symbolic pseudo-
code would look like

ADD TMP SUM SUM

As has been said, the primary input medium for early computers was punched cards. Since
there was a long tradition (dating from the use of office punched card equipment in the first
half of the twentieth century) of assigning particular fixed columns to the fields of data
records, the same kind of fixed format convention was adopted for the pseudo-codes. If the
operation names are limited to four characters and the variable names and statement labels
to three characters, then we can use a format such as the following:

Columns 1-4: operation 10-12: operand 2
6-8: operand 1 14-16: destination




1.3 IMPLEMENTATION 31

Only uppercase letters will be used since these were all that were available on key punches
at that time. In Figure 1.8 the Mean program is shown translated into this symbolic pseudo-
code. We have not included a list of all the mnemonics since they should be clear from con-
text.

We can see that the general structure of a program is

declarations
END
statements
END

This format, declarations followed by statements, has been preserved in most programming
languages. For instance, in the language Ada it takes the form

declare
declarations
begin
statements
end;

Also, variable declarations have the syntax (form)
VAR variable-name type
initial-value

where ‘type’ means the number of locations the variable occupies. This format is also pre-
served in many modern languages. In Ada we write

variable-name: type := initial-value;

although the idea of a type in Ada (and most modern languages) involves much more than
just the amount of storage to be allocated. There is one more thing to notice about the syn-
tax of this pseudo-code: The operation comes first in the statements:

operation operandl operand2 destination

This is called a prefix format (pre = before), and is still used for statements in most pro-
gramming languages, for example, in FORTRAN

DO 20 I=1, 100
PRINT 30, AVG

There is no reason why we had to pick a prefix form (there are others such as postfix and
infix), although it does agree with English grammar in putting the verb first in an impera-
tive sentence.

6 You may wonder why programs are shown sometimes in all uppercase letters, sometimes in lowercase let-
ters, sometimes in mixed cases, or in boldface, etc. The reason is that each language community has its own
typographical conventions, which they have evolved and are part of the overall character of the language.
Therefore we try to follow those conventions in our examples.




32 THE BEGINNING: PSEUDO-CODE INTERPRETERS

OPER opl o0P2 DST COMMENT'S

VAR ZRO 1 CONSTANT ZERO
+0000000000
VAR I 1 INDEX
+0000000000
VAR suMm 1 SUM OF ARRAY
+0000000000
VAR AVG 1 AVERAGE OF ARRAY
- +0000000000
VAR N 1 NUMBER OF ELEMENTS IN ARRAY
+0000000000
VAR ™P 1 TEMPORARY LOCATION
+0000000000
VAR DTA 990 THE DATA ARRAY
+0000000000
END
READ N READ NUMBER OF ELEMENTS
LABL 20
READ TMP READ INTO TEMP
GE TMP ZRO 40 IF POSITIVE, SKIP TO 40
SUB ZRO TMP TMP NEGATE TEMP
LABL 40
PUTA TP DTA I MOVE TEMP INTO THE I-TH ELEMENT
LOOP I N 20 LOOP FOR ALL ARRAY ELEMENTS
MOVE ZRO I REINITIALIZE INDEX TO ZERO
LABL 50
GETA DTA I TMP ADD I-TH ELEMENT
ADD TMP SUM SUM TO SUM
LOOP I N 50 LOOP FOR ALL ARRAY ELEMENTS
DIV SUM N AVG COMPUTE AVERAGE
PRINT AVG AND PRINT IT
STOP
END
Figure 1.8 Mean Absolute Value in Symbolic Pseudo-Code
To implement the symbolic pseudo-code, all that is required is that as the loader reads
in each instruction, it looks up the operation and the operands in the symbol table and re-
places them with the proper codes. The encoded form of the instruction is then stored in the
Program array. Thus, we can se€ that the loader is performing a translation function since
it is translating the source form of the program (the symbolic pseudo-code) into an interme-
diate form (the numeric pseudo-code) that is more suitable for the interpreter. This two-stage
process, translation followed by interpretation, is very common and will be discussed at length
in the following chapters. In fact, the translator, with its name lookup and storage allocation
functions, is a rudimentary form of a compiler. The function of a compiler is to translate a




1.4 PHENOMENOLOGY OF PROGRAMMING LANGUAGES 33

program in some source language into a form that is more convenient for execution. This
form is often machine language, which can be directly executed, but it may also be an in-
termediate language suitable for interpretation.

® Exercise 1-45*: Modify your interpreter to implement this symbolic pseudo-code and
test it on the Mean Absolute Value program. Translate your quadratic roots program into
this pseudo-code and execute it with this interpreter.

B Exercise 1-46*: Describe how you would make the pseudo-code free format, that is,
independent of the columns in which the fields appear (of course, they must be in the cor-
rect order). How would you implement this?

1.4 PHENOMENOLOGY OF PROGRAMMING LANGUAGES

Obviously programming languages, even simple ones such as our pseudo-code, are tools,
and so it will be worthwhile to investigate them from this perspective. Fortunately, the phe-
nomenology of tools has been explored in some detail, and in this section I will be using the
results of the investigations of Don Ihde.”

Tools Are Ampliative and Reductive

To better understand the phenomenology of programming languages, we may begin with a
simpler tool. Ihde contrasts the experience of using your hands to pick fruit with that of us-
ing a stick to knock the fruit down. On the one hand, the stick is ampliative: it extends your
reach to otherwise inaccessible fruit. On the other, it is reductive: your experience of the fruit
is mediated by the stick, for you do not have the direct experience of grasping the fruit and
tugging it off the branch. You cannot feel if the fruit is ripe before you pick it.

“Technological utopians” tend to focus on the ampliative aspect—the increased reach
and power—and to ignore the reductive aspect, whereas “technological dystopians” tend to
focus on the reductive aspect—the loss of direct, sensual experience—and to diminish the
practical advantages of the tool. But, “both are reduced focuses upon different dimensions
of the human technological experience.” Therefore, we should acknowledge the essential am-
bivalence of our experience of the tool: positive in some respects, negative in others. As Ihde
says, “all technology is nonneutral.”

These observations apply directly to programming languages. In the earliest days, com-
puters were programmed directly with patch-cords (an experience that is occasionally praised
in words appropriate to picking your own fruit!). Programming in machine language is nearly
as direct, and some early programmers even criticized decimal numbers for distancing pro-
grammers from the machine too much. Pseudo-codes are even more distancing, amplifying
programmers’ ability to write correct code, but reducing their contact with and control over

7 See his Consequences of Phenomenology (State University of New York Press, 1986), pp. 104—136. In phe-
nomenology one investigates the invariant structure of some phenomenon, that is, of some aspect of concrete
human experience of the world, by systematic variation of that experience. Tools are the phenomena of in-
terest here.




34

&

THE BEGINNING: PSEUDO-CODE INTERPRETERS

the machine. Early debates about the usefulness of pseudo-codes reflected ambivalence about
them as tools.

Fascination and Fear Are Common Reactions to New Tools

"When first introduced, programming languages elicited the two typical responses to a new

technology: fascination and fear. Utopians tend to become fascinated with the ampliative as-
pects of new tools, so they embrace the new technology and are eager to use it and to pro-
mote it (even where its use is inappropriate); they are also inclined to extrapolation: extending
the technology toward further amplification. (It is worth recalling that the root meaning of
“fascinate” is “to enchant or bewitch.”) Dystopians, in contrast, fear the reductive aspects of
the tool (so higher-level languages are feared for their inefficiency), or sometimes the am-
pliative aspects, which may seem dangerous. The new tool may elicit ambivalent feelings of
power or of helplessness. Ideally, greater familiarity with a technology allows us to grow
beyond these reactions, for the benefits and limitations of a technology are seldom revealed
in the fascination—fear stage of its acquaintance.

With Mastery, Objectification Becomes Embodiment

A tool replaces immediate (direct) experience with mediated (indirect) experience. Yet, when
a good tool is mastered, its mediation becomes transparent. Consider again the stick. If it is
a good tool (sufficiently stiff, not too heavy, etc.) and if you know how to use it, then it func-
tions as an extension of your arm, allowing you both to feel the fruit and to act on it. In this
way the tool becomes partially embodied. On the other hand, if the stick is unsuitable or you
are unskilled in its use, then you experience it as an object separate from your body; you re-
late fo it rather than through it. With mastery a good tool becomes transparent: it is not in-
visible, for we still experience its ampliative and reductive aspects, but we are able to look
through it rather than at it.

Programming languages exhibit a similar variation between “familiar embodiment” and
“alienated otherness.” When you first encounter a new programming language, it is experi-
enced as an object: something to be studied and learned about. As you acquire skill with the
language, it becomes transparent so that you can program the machine through the language
and concentrate on the project rather than the tool. With mastery, objectification yields to
(partial) embodiment.

This is part of the reason that a full evaluation of a programming language requires con-
siderable experience in its use. When the language is first encountered, one is apt to fall into
the limited perspectives of fascination and fear. But even with increased familiarity, there is
still a tendency to treat the languages as an object, until mastery is achieved, and the lan-
guage’s benefits and limitations can be viewed in a context of transparent use.

Programming Languages Influence Focus and Action

Tools influence the style of a project. For example, Ihde contrasts three writing technolo-
gies: a dip pen, an electric typewriter, and a word processor. In the case of a dip pen the
speed of writing is so much slower than the speed of thought that a sentence can be crafted



1.4 PHENOMENOLOGY OF PROGRAMMING LANGUAGES 35

word by word as it is written; this could tend to a style of belle lettres or to calligraphy. With
an electric typewriter the speed of writing is closer to the speed of thought, so this tool in-
clines toward (but does not dictate) a more informal style. However, revisions require re-
typing, so there is a tendency to revise works as wholes. With a word processor, in contrast,
text can be revised and rearranged in small units, so there is a greater tendency to salvage
bits.of text. There is a tendency toward a different style (“Germanic tomes,” Ihde suggests).

In general, a tool influences focus and action. It influences focus by making some as-
pects of the situation salient and by hiding others; it influences actions by making some easy
and others awkward. Like other tools, programming languages influence the focus and ac-
tions of programmers and therefore their programming style.

A programming language inclines programmers toward a style; it creates a tendency,
which the majority of programmers will follow. However, I must emphasize that it does not
dictate a style; individual programmers may choose to work against the language’s inclina-
tion. Thus, for example, we sometimes observe a programmer “writing FORTRAN in LISP,”
that is, writing FORTRAN-style code in the LISP language. Nevertheless, we must consider
carefully the stylistic inclinations of a programming language. Does it encourage the focus
and actions that we want to encourage?

Summary

We summarize what we can conclude about programming languages from the phenomenol-
ogy of tools. Programming languages transform the situations encountered in programming
projects. They are nonneutral and have ampliative and reductive aspects, both of which should
be kept in mind. Further, to assess the benefits and limitations of a programming language
properly, it is necessary to advance beyond the fascination—fear stage. When a well-designed
language is mastered, it becomes a transparent extension of the programmer rather than an
obtrusive object. Finally, by influencing the focus and actions of programmers, a language
inclines its users toward a particular style, but it does not force it on them.

B Exercise 1-47*: Identify the ampliative and reductive aspects of several common tools
and technologies and discuss the conditions for transparency and embodiment. For ex-
ample, consider eye glasses, automobiles, telephones, recorded music, or the Internet.

B Exercise 1-48*: Select an ampliative aspect of some programming language and de-
scribe the result of an extrapolation toward greater amplification. What is the correlative
reduction? Discuss whether this extrapolation would be desirable.

B Exercise 1-49*: Amplificatory extrapolations often reflect our “imaginations and de-
sires” for our projects. What do you think are the typical “imaginations and desires” of
programmers? What sorts of “trajectories of extrapolation” might they lead to?

B Exercise 1-50*: Analyze in detail the effect of our pseudo-code (either the numerical
or symbolic version) on the focus and actions of its users. Compare its effect on a 1950s
programmer and on a contemporary programmer.

8 Exercise 1-51*: Consider your favorite programming language. What focus and actions
does it encourage? What focus and actions does it discourage? Give evidence in both
cases.




36

THE BEGINNING: PSEUDO-CODE INTERPRETERS

B Fxercise 1-51*: Programming languages (and other technologies) are culturally em-
bedded, which means that our reactions to them are influenced by our personal and col-
lective backgrounds. Further, their stylistic inclinations may vary from user to user. Select
a programming language with which you are familiar and discuss how it is experienced
by different groups of programmers (scientific, systems, commercial, amateur, novice, etc.).

1.5 EVALUATION AND EPILOG

e

- Pseudo-Code Interpreters Simplified Programming

We have seen that pseudo-codes simplified programming in many ways. Most important,
they provided a virtual computer that was more regular and higher level than the real com-
puters that were available at first. Also, they decreased the chances of error while taking over
from the programmer many of the tedious and error-prone aspects of coding. Pseudo-codes
increased security by allowing error checking, for example, for undeclared variables and out-
of-bounds array references. Finally, they simplified debugging by providing facilities such
as execution traces. We will see in later chapters that all of these remain important advan-
tages of newer programming languages.

Floating-Point Hardware Made Interpreters Unattractive

Decoding pseudo-code instructions adds a great deal of overhead to program execution. In
the beginning of this chapter, we pointed out that most of this overhead was swamped by
the time necessary to simulate floating-point arithmetic. That is, since programs were doing
mostly floating-point arithmetic, which was slow, they were spending most of their time in
the floating-point subroutines. The little additional time they spent in the interpreter was well
worth the advantages of the pseudo-code. This changed when floating-point hardware was
introduced on the IBM 704 in 1953. Experience with floating-point arithmetic and indexing
facilities in the pseudo-codes led IBM and the other manufacturers to include these in the
newer computers. Since programs were no longer spending most of their time in floating-
point subroutines, the factor of 10 (or more) slower execution of interpreters became intol-
erable. Since at this time computer time was still more expensive than programmer time, in-
terpreters became unpopular because the total cost of running a machine-language program
was less than that of a pseudo-code program.

Pseudo-codes are still used for special purposes such as intermediate languages. For ex-
ample, Pascal is often translated into a pseudo-code called P-code. The P-code program is
then either translated into machine language or interpreted. Programmers no longer write di-
rectly in pseudo-codes, except when programming some hand-held calculators.

Libraries Led to the Idea of “Compiling Routines”

An alternative to the use of interpreters was the “compilation” of programs from libraries of
subroutines. The idea was that a programmer would write pseudo-code instructions that




EXERCISES 37

would, at load time, call for subroutines to be copied from a library and assembled into a
program. Since the translation and decoding were done once, at compilation time, compiled
programs ran more quickly than interpreted programs. This was so because an interpreter,
for example, must decode the instructions in a loop every time through the loop.

However, since the subroutines assembled by a compiler could not be made to fit to-
gether perfectly in all combinations, there was an interface overhead that made compiled
programs less efficient than hand-coded ones. The result was that programmers considered
these “automatic coding” techniques inherently inefficient and only suitable for short pro-
grams that would be run only a few times. Thus, the prevailing attitude in the early to mid-
1950s was that important programming had to be done in assembly language. Although, as
we will see in the next chapter, FORTRAN proved the viability of “automatic coding,” this
attitude was to continue for many years.

1. Compare and contrast the numeric pseudo-code interpreter, the symbolic pseudo-code inter-
preter, and an assembler.

2. Study the manual of an assembly language and critique that language with respect to the lan-
guage design principles you have learned. Pay particular attention to the regularity and or-
thogonality of the language.

w

Pick some programmable calculator and evaluate its instruction set as a pseudo-code.

&

Make the following specification more precise, that is, make reasonable assumptions and jus-
tify them: Free format pseudo-code instructions allow the operator and operands of instruc-
tions to be separated by any number of blanks, and allow any number of instructions to be
put on one line.

o

Alter the symbolic pseudo-code loader to accept the free format instructions specified in the
previous exercise.

6. Suppose we wanted to add the three trigonometric functions (sin, cos, tan) and their inverses
to our pseudo-code interpreter. Design this extension to the language. (Note that this exten-
sion will increase the number of operators to more than 20.)

7. As language evolve, they often must be extended. Discuss how to design a pseudo-code to
accommodate the later addition of new operations. Discuss a policy for limiting extensions
to those that are necessary.

8. In this chapter we designed a pseudo-code for numerical and scientific applications. Design
a pseudo-code for commercial (business data-processing) applications. Discuss your rationale
for including or omitting various features.

9. Implement the pseudo-code designed in the previous exercise.

10. Pick an application area that interests you (e.g., stock portfolio management, expenses,
dates/appointments, checkbook management, grading). Design a pseudo-code appropriate to
a hand-held computer that would be helpful in this application area. You will be graded on
your adherence to the principles you’ve learned and on the wisdom of engineering trade-offs.

11. Implement the pseudo-code designed in the previous exercise.




