
1

1

CS 4100
Block Structured Languages

From Principles of Programming Languages:
Design, Evaluation, and Implementation
(Third Edition), by Bruce J. MacLennan,
Chapter 6, and based on slides by Istvan

Jonyer

2

Chapter 6:
Implementation of Block-Structure

•  Addressing implementation aspects of
block-structured languages (Pascal and
Algol)
– Fortran (and pseudocode) not block

structured
– We’ll focus on Pascal, since most

languages these days are Pascal-like
– Algol is block structured

3

Activation Record

•  Represents the state of a procedure

4

Fixed vs Variable

•  Program has two major components
– Fixed part

•  Code (the program itself)
•  Does not change during runtime

– Variable part
•  Activation record
•  Dynamically created and deleted at runtime
•  We’ll focus on this part

5

State of an Activation

•  Point of execution (instruction pointer)
–  Stored in IP of activation record (and IP register of

processor)
–  Usually points to next instruction

•  Context of execution (scope/environment)
–  Environment pointer (EP)
–  Local context

•  Local activation record
–  Non-local context

•  Non-local activation record

6

Activation Records
•  Local variables and formal parameters

are contained in the activation record
– Create and delete correspond to entry and

exit
•  Context of a statement

– Names declared in current procedure +
– Names declared in surrounding procedures

•  For multiple bindings, innermost declaration is
used (if name not found in current activation
record, look to outer A/Rs successively)

2

7

Static Link

•  How to keep track of outer scopes? (p214)

–  Static link points to outer activation record
–  Each context (A/R) has static link to outer scope
–  Static links form a chain all the way to top level

(global scope, and beyond to OS)

–  Static chain reflects the static structure of the
program

•  The way procedures are nested
•  Ends at global scope

8

program a(…);

 var N: integer;
 procedure b(sum: real);

 var i: integer;

 avg: real;

 Data: array[1..10] of real;

 procedure c(val: real);
 begin

 writeln (Data[i]);

 end; // c

 begin // b

 ...
 end; // b

begin // a

 ...

end; // a

9

Contour Diagram of Static
Structure of Previous Program

N

sum
i
avg
Data

val

(c)

(b)

(a)

EP

10

Pointers

•  EP points to active local context
•  SP points to register of active context
•  IP points to next instruction
•  SL outer activation record

– Environment of declaration
– Keeps track of outer scopes

•  DL (coming soon) points to callers A/R
– Talked about this in Fortran

11

Activation Record for Procedures

•  Activation record of (c)

•  Activation record of (b)

•  Activation record of (a)

val
SL

Data
avg

i
sum
SL
N
SL
…

SP

EP

12

Variable Addressing
•  Name lookup is done at compile time

– Names are not actually looked up at runtime
– Names are bound to addresses in activation

record
•  We need two addresses for accessing a

variable
– How far we have to follow the static link

•  Where the variable is defined

– Offset of variable in activation record

3

13

Terminology
•  Static nesting level

– How deep the scope is where variable is
defined (from global scope)

– Number of contour lines surrounding
declaration or use

•  Static distance
– Distance between the variable’s

declaration and use
•  Offset

– Variables position inside activation record
14

Fetching a Variable

•  Notation
–  M[i]: memory at address i
–  EP: environment pointer (how to get to A/R)
–  offset(v): relative offset of variable v in activation

record (how to find in A/R)
–  reg.X: processor register (EP,IP,SP)

•  General case (v is local)
–  fetch M[reg.EP + offset(v)]

15

Examples
•  Get variable sum (with offset 1) at static

distance of 1
–  ARP: activation record pointer
ARP := M[reg.EP];
fetch M[ARP + 1];

•  Get variable N (with offset 1) at static distance
of 2
ARP := M[reg.EP];
ARP := M[ARP];
fetch M[ARP + 1];

16

Activation Record for Procedures

•  Activation record of (c)

•  Activation record of (b)

•  Activation record of (a)

val
SL

Data
avg

i
sum
SL
N
SL
…

SP

EP

17

Dynamic Link

•  How is dynamic link different from static link?
–  Can we do with just one?

•  Both are needed for static scoping
•  Dynamic link is enough for dynamic scoping

•  Static link
–  Points to environment of declaration

•  Dynamic link
–  Points to caller

•  Can restore caller’s state on exit

18

Dynamic vs Static Link

Dynamic chain

B()
 Q()
 begin
 P()
 end
 P()
 begin
 Q()
 end

begin
 P()

end

Q
P
Q
P

Q
P
B
…

Static chain

4

19

Procedure Activation

•  Three steps
– Save state of caller

•  In local activation record

– Create activation record of callee
•  Transmit parameters to callee
•  Establish dynamic link from caller

– Enter callee
•  At its first instruction

20

Saving the Caller’s State
•  Saving address where caller must resume

after returning from call
•  Saving locals and non-locals

–  No action is required
–  Locals are already stored in AR
–  Access to non-locals is already established (SL)

•  Saving processor registers
–  Registers must be saved in AR
–  Platform-specific (not discussed)
–  Not visible to programmer

21

Creating Callee’s AR
•  Callee’s AR has following components

–  PAR: parameters
•  Parameters are placed here by caller
•  M[callee’s AR].PAR[1] := evaluation of parameter 1;

–  IP: resumption address
•  Not used until making procedure call

–  SL: static link
•  Set to environment of definition
•  Computed from static nesting levels of procedures
•  M[callee’s AR].SL := reg.EP (if defined in current scope)

–  DL: dynamic link
•  Set to caller’s AR (EP register)
•  M[callee’s AR].DL := reg.EP

22

Final Steps
•  Install callee’s AR as current activation

record
reg.EP := callee’s AR;

•  Include callee’s AR in stack “officially”
reg.SP := reg.SP + size(callee’s AR);
goto entry(callee);

•  Both entry point and AR size are known
at compile time
– Goto = reg.IP := entry(callee)

23

Procedure Exit
•  We have to effectively reverse the entry

procedure
– Delete callee’s activation record

•  Subtract size of AR from stack
–  reg.SP := reg.SP – size(callee’s AR)

– Restore the state of the caller
•  Reinstalling the caller’s context

–  reg.EP := M[reg.EP].DL;

– Resume execution of caller
•  reg.IP := M[reg.EP].IP (goto M[reg.EP].IP)

24

Non-Local GOTOs

•  Local GOTO
– Simple machine jump to address

•  Non-local GOTO
– Requires restoration of environment
– Must manipulate runtime stack

•  Analogous to returning from a procedure call

5

25

Example
B()
 Q()

 P()
 begin
 …
 goto 1;
 end

 begin
 P()
 …
 end

begin
 Q()

1: …
end

26

Implementation
•  How do we find the scope for the label?

–  Static nesting level is kept in symbol table at compile time
–  Static difference sd can be computed and found runtime

•  Steps involved:
–  Scan down static chain sd times

•  sd times: reg.EP := M[reg.EP].SL
–  Remove ARs from top of stack

•  reg.SP := reg.SP + size(AR of label)

–  Transfer execution to point of label (constant)
•  goto address(label)

27

Displays
•  Traversing static chains is proportional to

length of chain
–  Would be nice if it was constant

•  Solution
–  Store the address of activation record for each

environment (not procedure call!) in array
–  This array is called the “display” D
–  Accessing static nesting levels is easy

•  D[snl]
–  Accessing variables is now only two steps, always!

•  fetch M[D[snl] + offset(variable)]

28

Static Chains vs. Displays
Operation Static Chain Display

Local variable 1 2

Non-local variable sd+1 2

Procedure call sd+3 6

Procedure return 2 5

• SC values are estimates

• Displays
o  Better for variables

o  Worse for procedure calls

29

Blocks
•  Pascal does not have blocks…
•  But Algol, C, Ada and many others do
•  Blocks require activation records

– Thus, entering and exiting a block is
analogous with calling and returning from a
procedure

– Can they be implemented in the same
way?

•  Yes!

30

Block vs. Procedure
•  Some efficiency hacks are possible with

blocks
– Blocks are always called from the same

place! …and returns to the same place!
•  No need to save IP (resume address) of caller
•  No need to save processor registers
•  Environment is always the same

–  Environment of definition = Surrounding block
–  Static and dynamic links are the same

– No parameters
•  No need to evaluate and copy parameters

6

31

Improvements

•  Simplified structure
– LV: local variables

•  Block can have local variables
–  (vs. compound statements)

–  IP: resumption address
•  Block may call procedure

– SL: static link
•  Remove dynamic link, since they are the same

32

Entry-Exit

•  Entry:
M[reg.SP].SL := reg.EP;

reg.EP := reg.SP;

reg.SP := reg.SP + size(block AR)

•  Exit
reg.SP := reg.SP - size(block AR)

reg.EP := M[reg.EP].SL;

