
9/19/13

1

1

Algol

CS4100
From Principles of Programming Languages: Design,

Evaluation, and Implementation (Third Edition), by
Bruce J. MacLennan, Chapters 3and 4, and based on

slides by Istvan Jonyer.

2

After FORTRAN
•  International language is needed

– 1964: New language is proposed to break
away from platform dependence

– Preliminary spec: NPL (new programming
language), then PL/I (programming
language 1)

– PL/I is too big
•  Dijkstra: If Fortran is an infantile disorder, then

PL/I is a fatal disease
•  Trying to be everything to everyone backfires

3

Chapter 3: Generality and
Hierarchy: ALGOL-60

•  An international language is needed
– A single, universal language would be

valuable
–  International (American and European)

committee is set up to make
recommendations

– Algol-58 is created in 8 days in Zurich, as a
preliminary report

– Algol: Algorithmic Language
4

Implementations
•  Because of the hype, many started

implementation quickly
–  This resulted in many dialects
–  JOVIAL (Jules’ Own Version of the International

Algebraic Language)
•  Committee meets again in 1960 to

incorporate suggestions
–  Algol-60 is born and is very different from the ’58

report.
–  Report is 17 pages long: remarkable achievement,

mainly due to BNF notation (reports used to
stretch to hundreds or thousands of pages)

5

Algol Report
•  1959 UNESCO Conference on Information

Processing
–  Backus presents a description of Algol ‘58

•  Uses formal syntax he developed
–  Naur is editor of Algol Bulletin

•  Disagrees with some of Backus’ interpretation
•  Need for more precise description
•  Develops a variant of Backus’ formal syntax

Backus-Naur Form, aka BNF used for 1960 Algol
Report

6

Algol’s Objectives

•  The language should be very close to
mathematical notation

•  Should be useful in publications to
describe algorithms

•  Mechanically translatable to machine
code

9/19/13

2

7

Structural Organization
•  Hierarchically structured language

–  Nesting is introduced (Fortran did not use nesting)
–  Control structures can also be nested

•  One can be made the body of the other
if N > 0 then
 for i := 1 step 1 until N do
 sum := sum + Data[i]

•  Advantage: decreases the number of GOTOs required

•  Reserved words

8

Constructs
•  Declarative or Imperative

–  (like in FORTRAN)
•  Variable declarations

–  Types: integer, real, Boolean
integer i, j, k

–  Lower bounds of arrays need not be 1
real array Data[-50:50]

–  Switch, like FORTRAN’s computed GOTO
•  Subprogram declarations

–  Keyword: procedure and
–  Procedures can be typed (functions) and untyped

real procedure dist(x1, y1, x2, y2);
 real x1, y1, x2, y2;
 dist = sqrt((x1 – x2)^2 + (y1 – y2)^2)

9

Imperative Constructs

•  Computational
– Assignment: “variable := expression”
– Operators:

•  Arithmetic: +, -, *, etc.
•  Relational: =, <, >, ≥, etc.
•  Logic: ∧, ∨, ¬, etc.

– Why is assignment ‘:=’ and not ‘=’?
•  Assignment is different from definition and

comparison
•  I = I + 1 ; I := I + 1

10

Imperative Constructs

•  Control-flow
– All imperative constructs alter flow of

control (except assignment)
– Has if-then-else
–  for-loop replaces do-loop

•  No input/output constructs
–  I/O was left to be handled by platform-

dependent library calls

11

Name Structures
•  Algol-60 introduces the compound statement

–  Where 1 statement is allowed, more can be used, using
begin-end
for i := 1 step 1 until N do
 sum := sum + Data[i]

for i := 1 step 1 until N do
 begin
 sum := sum + Data[i];

 Print Real (sum)

 end
–  Also, the body of a procedure is a single statement

12

Syntax - Program
•  <program> ::= <block> | <compound statement>

•  <block> ::= <unlabelled block> | <label>: <block>
•  <compound statement> ::= <unlabelled compound> | <label>:

<compound statement>

•  <unlabelled compound> ::=
 begin <compound tail>
•  <unlabelled block> ::=
 <block head> ; <compound tail>

9/19/13

3

13

Syntax - Block
•  <block> ::= <unlabelled block> |
 <label>: <block>
•  <unlabelled block> ::=
 <block head> ; <compound tail>
•  <block head> ::= begin <declaration> |
 <block head> ; <declaration>
•  <compound tail> ::= <statement> end |
 <statement> ; <compound tail>

14

Syntax - Statement
•  <compound statement> ::= <unlabelled compound> |
 <label>: <compound statement>
•  <unlabelled compound> ::= begin <compound tail>
•  <compound tail> ::= <statement> end | <statement> ; <compound tail>

•  <statement> ::= <unconditional statement> | <conditional statement> |
 <for statement>
•  <unconditional statement> ::= <basic statement> |
 <compound statement> | <block>
•  <basic statement> ::= <unlabelled basic statement> |
 <label>: <basic statement>
•  <unlabelled basic statement> ::= <assignment statement> |
 <go to statement> | <dummy statement> |
 <procedure statement>

15

Name Binding
•  Fortran binds a variable to a single memory

location statically
•  Algol-60 included the results of research done

on name structures, which were problematic
in Fortran
–  Sharing of data between subprograms
–  Parameter passing modes
–  Return values
–  Dynamic arrays

•  Result of research: block structure

16

Blocks Define Nested Scopes
•  Fortran

–  Had local and global declarations only
–  Had to redeclare using COMMON to share

•  Algol-60
–  Introduces blocks

begin
 declarations;
 statements
end

–  Compound statements do not have ‘declarations’.
–  All declarations are visible to all statements in the block
–  Since statements can be blocks, scopes can be nested

17

Why do we need scopes?

•  Reduce the context programmers have to keep in
mind

•  Make understanding and maintenance of program
easier

•  Scopes reduce visibility of names
–  Declare variable only where needed and used

•  Nested blocks inherit names from outside
–  It would be very inconvenient if they did not

18

“COMMON” with Blocks

•  The error-prone COMMON in Fortran can be
implemented in a much better way using
blocks
begin
 integer array Name, Loc, Type[1:100];
 procedure Lookup (n);
 . . . Lookup procedure . . .
procedure Var (n, l, t);
 . . . Var procedure . . .
 procedure Array1 (n, l, t, dim1);
 . . . Array1 procedure . . .
end

9/19/13

4

19

Too Much Access

•  Blocks provide “indiscriminate access”
– Since functions must be accessible to

users,
– and data structures must be accessible to

functions
– à Data is also accessible to users

•  Violates information hiding principle

20

Contour Diagrams
•  Inner blocks implicitly inherit access to all variable in

immediately surrounding block
•  Names declared in a block are local to the block
•  Names declared in surrounding blocks are nonlocal
•  Names declared in outermost block are global

21

Contour Diagrams

•  See Figure 3.3, page 102
•  Do Exercise 3-1, page 104

22

Dynamic vs Static Scoping

•  Static scoping
–  Procedure is called in the context of its declaration

•  Environment of Definition
–  Scope structure is determined at compile-time
–  Algol

•  Dynamic scoping
–  Procedure is called in the context of its caller

•  Environment of Caller
–  Scope structure is determined at run-time
–  LISP

23

Example
•  Draw static contour diagram
•  Draw dynamic contour diagram for both calls to P
a:begin
 integer m outer m
 procedure P
 m := 1;
 b:begin

 integer m; inner m
 P inner call
 end
 P outer call

 end

24

Dynamic Scopes and Functions
•  Dynamic scoping applies to all names (not just

variables)
•  Advantage:

–  We can write a general procedure that makes use of
procedures in the caller’s environment

•  No need to have all names defined in static context

•  Disadvantage:
–  If caller’s environment provides a different function than

what is intended to be used (see example page 109)
•  Programmer has to think about envt when writing calls

9/19/13

5

25

Which one is better?
•  General rule:

–  What is natural to humans will cause less problems in the
long run

–  If humans can understand static scoping better, than it will
result in higher quality programs in the long run

•  Dynamic scoping is confusing
–  Generally rejected (not used in new languages)
–  Static scoping agrees more with the program’s dynamic

behavior

26

Blocks Permit
Efficient Storage Management
•  Fortran used EQUIVALENCE

–  Not safe, since there is no guarantee of exclusive use of
memory

•  Blocks permit reuse of memory
a:begin integer m, n;
 b:begin real array X[1:100], real y;
 ...
 end
...
 c:begin integer k; real array M[0:50];
 ...
 end
end

27

Run-Time Stacks
•  Variables in blocks b and c are never used at the same

time
•  When exiting b, its variables may be discarded
•  Notice: Block entered last will be exited first

–  LIFO (last-in first-out) order
–  Can use a stack to organize activation records
–  When block is entered, its AR is pushed onto stack
–  When block is exited, its AR is popped off stack
–  Assumption: No local variables are initialized

28

Example

•  From previous program

n
m
…

y

X

n
m
…

n
m
…

M

k
n
m
…

n
m
…

enter (a) exit (a) enter (b) exit (b) enter (c) exit (c)

29

Responsible Design
•  Algol designers did not include

EQUIVALENCE
– Programmers might have asked for it…
–  Instead, they looked at the root of the

problem
– “Don’t ask what they want, ask how the

problem arises”
– Language designers are responsible for

the features in the language, not
programmers

30

Principles of Programming

•  The Responsible Design Principle
– Do not ask programmers what they want,

find out what they need.

9/19/13

6

31

Data Structures

•  Primitives
–  Mathematical scalars, like in Fortran
–  integer, real, Boolean
–  complex and double not included

•  Double: platform dependent
–  Not portable
–  Why? Because we need to know the size of a

word to know how big double is.
–  Alternate approaches:

•  specify precision
•  Let compiler pick precision

32

Why no complex?

•  Not primitive
–  Can be constructed using other types easily (2

reals)
•  Is it easy to use reals for complex?

–  Yes, but inconvenient
–  Need supporting operations

•  ComplexAdd(x, y, z), etc.
•  Designers’ choice:

–  Is it worthwhile to add the complexity/overhead of
another type? (conversions, coercion, operator
overload, etc.)

–  Will they get enough use?

33

Strings
•  Yet another data structure that needs full support

(operation, etc.)
•  Algol designers included strings as second-class

citizens
–  string type is only allowed for formal parameters
–  String literals can only be actual parameters
–  No operations
–  Strings can only be passed around in procedures
–  Cannot actually do anything with them

•  What’s the point???
–  String will end up getting passed to output procedure written

in a lower (machine) language that can handle it

34

Zero-One-Infinity
•  Programmers should not be required to

remember arbitrary constants
•  Fortran examples

–  Identifiers have max. 6 characters
–  There are at most 19 continuation cards
–  Arrays can have at most 3 dimensions

•  Regularity in Algol requires small number of
exceptions
–  Gives rise to Zero-One-Infinity principle
–  E.g.: Identifier names should be either 0, 1 or

unlimited length. (0 & 1 don’t make much sense)

35

Principles of Programming

•  The Zero-One-Infinity Principle
– The only reasonable numbers in

programming language design are zero,
one and infinity.

36

Arrays are Generalized
•  Arrays can have any number of dimensions
•  Lower bound can be number other than 1

–  More intuitive, and less error prone than fixed lower bound

•  Arrays are dynamic
–  Array bounds can be given as expressions, which allows

recomputation every time the block is entered
–  Array size is set until block is exited

•  (Fortran had fixed array sizes.)

9/19/13

7

37

Strong Typing
•  Strong typed language

–  Prevents programmer to perform meaningless operations on
data

–  Not to be confused with legitimate type conversions (integer
+ real (coercion))

•  Fortran
–  Weakly typed
–  Permits adding to a Hollerith constant, etc.
–  Equivalence allows setting up the same memory for different

types
•  Security and maintenance problem
•  Intentional type violation is not portable

•  Exception: System programming (C)
–  Have to treat memory cells as raw storage without regard to

type

38

Control Structures

•  Primitive statements are similar to
Fortran’s
– Assignment
– Control flow
– No input/output

39

Controls are Generalized: if

•  Fortran had many restrictions
– if (exp) simple statement

•  Statement restricted to GOTO, CALL, or
assignment

•  Algol removes restrictions
– All statements are allowed (even ‘if’ in

body of ‘if’)
– ‘else’ added to address false condition

40

Controls are Generalized: for
•  Algol’s for is more general than Fortran’s do

for i := 1 step 1 until N do
 sum := sum + Data[i]

–  Leading-decision loop:
for NewGuess := Improve(OldGuess)
 while abs(NewGuess – OldGuess) > 0.01
 do OldGuess := NewGuess

–  Same as while loop in newer languages:
NewGuess := Improve(OldGuess);
while abs(NewGuess – OldGuess) > 0.01 do
 begin
 OldGuess := NewGuess;
 NewGuess := Improve(OldGuess);
 end

41

Another for loop
 for i := 3, 7,
 11 step 1 until 16,
 i ÷ 2 while i >= 1,
 2 step i until 32 do
 print(i);

3 7 11 12 13 14 15 16 8 4 2 1 2 4 8 16 32
 42

Goal: Regularity

•  Algol was designed around regularity
– “Anything that you think you ought to be

able to do, you will be able to do.”
– Elaboration on zero-one-infinity principle

•  Remove inexplicable exceptions from the
language

9/19/13

8

43

begin … end
•  Algol-58:

–  All control structures should be allowed to have
any number of statements

–  All control statements were considered an opening
bracket, with corresponding closing bracket

•  if … endif
•  Algol-60

–  Largely due to the BNF notation, they realized that
one bracketing mechanism is enough for all

–  Defined begin-end bracketing
•  Define compound statements
•  Makes one statement out of a group of statements
•  Allowed anywhere a single statement is expected

44

Example
for i := 1 step 1 until N do
 sum := sum + Data[i]

for i := 1 step 1 until N do
 begin
 sum := sum + Data[i];
 Print Real (sum)

 end

45

begin-end Issues

•  Easy to omit begin-end
– Especially when single statement is used

first, then another is added
– Especially the case with well-indented code

for i := 1 step 1 until N do
 sum := sum + Data[i];
 Print Real (sum)

– This is a maintenance problem
– Good convention: always use bracketing

46

begin-end Has Double Duty
•  begin-end are used for

–  Compound statements
•  Collection of statements is handled as one statement

–  Blocks
•  Define nested scopes
•  Include definitions, in addition to statements

•  Any difference?
–  Compound statements do not need an activation record
–  Compiler must determine whether begin-end has

declarations, and generate block-entry code if so

47

Structured Programming
•  Compound statements drastically reduce the number

of GOTOs required
–  In Fortran, GOTO was the workhorse for control
–  Example: if-then-else

•  GOTO-less programs were easier to read
–  This led people to experiment with abolishing GOTO
–  Dijkstra: “Go To Statement Considered Harmful”

•  Difficulty in reading programs came from conceptual gap
between static and dynamic structure of program

•  i.e.: static layout on paper, versus runtime operation
•  Result: languages still have GOTOs, but we don’t use them

48

Principles of Programming

•  The Structure Principle
– The static structure of the program should

correspond in a simple way to the dynamic
structure of corresponding computations.

9/19/13

9

49

Procedures are Recursive
•  Recursive definitions are frequent in math and science

–  Define thing in terms of itself
–  Example:

•  Factorial: n! =
n * (n – 1)! if n > 0
1 if n = 0

•  Algol permits recursive procedures
integer procedure fac(n);
 value n; integer n;
 fac := if n = 0 then 1 else n*fac(n-1);

–  ‘n = 0’ is called the stopping condition

50

Implementing Recursion

•  What happens to local variable n on
recursive call?
–  fac(3) is called, then fac(2), then fac(1),

then fac(0)
– Would location holding 3 be overwritten?

•  Yes, if same activation record was used
– Solution:

•  Create new activation record for each
invocation of fac()

51

Parameter Passing

•  Modes in Algol
– Pass by value
– Pass by name

•  Two modes attempt to distinguish
between input only and input/output
parameters

52

Pass by Value
integer procedure fac(n);
 value n; integer n;

•  First part of pass by value-result (in Fortran)
–  Actual copied into variable corresponding to formal
–  Secure; local variable will not overwrite actual parameter
–  Does not allow output parameters (input only)
–  Inefficient for arrays (or other non-primitive data structures,

in general)
•  Copy must be made of entire array in activation record
•  Copying takes time

53

Pass by Name

•  Based on substitution
–  Consider
integer procedure Inc(n);
 integer n;
 n := n + 1;

–  And the call Inc(i)
•  We need output parameter that will effect i, not just

local n
–  Acts like i is substituted for n
 i := i + 1

54

Copy Rule

•  Procedure can be replaced by its body
with actuals substituted for formals

•  Revised Report 4.7.3
•  Body of Inc(n)

– i := i + 1
– A[k] := A[k] + 1

•  Not how it is implemented

9/19/13

10

55

Pass by Name is Powerful
•  Evaluate the following using pass by value,

reference, and name
procedure S(el,k);
 integer el, k;
 begin
 k := 2;
 el := 0;
 end
A[1] := A[2] := 1;
i := 1;
S(A[i], i)

•  Value A[1] = 1, A[2] = 1, i = 1
•  Reference A[1] = 0, A[2] = 1, i = 2
•  Name A[1] = 1, A[2] = 0, i = 2

56

“Thunks”
•  Implementing pass by name

– Passing the text?
•  Would need to compile at runtime

–  not possible

– Copying compiled code?
•  Would increase size of code…

– Solution: “Thunks”
•  Pass address to compiled code
•  Address of memory location is returned to

callee to use as variable

57

Pass by Name is Dangerous!
procedure Swap(x, y);
 integer x, y;
 begin integer t;
 t := x;

 x := y;

 y := t;

 end

•  What is the effect of
–  Swap(A[i], i)?
–  Swap(i, A[i])?

58

•  Swap(r,s), where r=1,s=2!
procedure Swap(x, y);
 integer x, y;
 begin integer t;
 t := r; t=1

 r := s; r=2
 s := t; s=1

 end

59

•  Swap(A[i], i) where A[i]=27, i=1
procedure Swap(x, y);
 integer x, y;
 begin integer t;
 t := A[i]; t=27

 A[i] := i; A[1]=1
 i := t; i=27

 end

60

•  Swap(i, A[i]), where i=1, A[i]=27
 procedure Swap(x, y);

 integer x, y;
 begin integer t;

 t := i; t=1
 i := A[i]; i=27
 A[i] := t; A[27]=1

 end

9/19/13

11

61

Pass-by-name

•  It can be shown that there is no way to
define swap in Algol-60 that works for
all parameters

•  Design mistake when a simple
(common) procedure has such
surprising properties

62

Parameter Passing Modes
•  Pass by value

–  Bind to value at time of call
–  Preserves actual (no output parameters)
–  Inefficient for arrays

•  Pass by reference
–  Bind to address at time of call
–  Changes actual (can be used for output)
–  Efficient for all data types

•  Pass by name
–  Bind to address of thunk at time of call
–  Changes actual (can be used for output)
–  Efficient, but expensive

63

Out-of-Block GOTOs
A: begin array x[1:100];
 ...
 B: begin array y[1:100];
 ...
 goto exit;
 ...
 end;
exit:
 end

•  What happens to activation records?
–  Program continues in different block
–  Pop activation record
–  Makes goto complicated

64

Even worse…
begin
 procedure P(n);
 value n; integer n;
 if n = 0 then goto out
 else P(n-1);
 P(25);

out:
end

•  Recursive call 25 times then jump to out!
–  Pop 25 activation records

•  Data dependent, can’t know at compile time
–  Implement goto as call of run-time routine

65

Feature Interaction
•  Example:

–  GOTOs are simple
–  Recursion is simple
–  Combination is very messy

•  In theory, each feature must be tested with every
other one to avoid unintended consequences

•  100 features:
–  Every pair: 100x100 = 10,000 combinations
–  Every three: 1003 = 1,000,000
–  …

66

The for-loop is Very General
for var := exp step exp2 until exp3 do stat
for var := exp while exp2 do stat
•  Expressions can be any arithmetic expression, including

•  for i := i/2 while i>1 do stat
–  Lists

•  for days := 31, 28, 31,30, 31, 30 do stat
–  Conditional expressions (vs. conditional statements!)

•  for days := 31,
 if mod(year, 4) = 0 then 29 else 28,

 28, 31, 30, 31, 30 do stat

–  Combinations of above
•  for i := 3, 7,
 i/2 while i>1,
 11 step 1 until 16
 do stat

9/19/13

12

67

•  <for statement> ::= <for clause> <statement> |
 <label>: <for statement>
•  <for clause> ::= for <variable> := <for list> do
•  <for list> ::= <for list element> | <for list> , <for list element>
•  <for list element> ::= <arithmetic expression> |
 <arithmetic expression> step <arithmetic expression>
 until <arithmetic expression> |
 <arithmetic expression> while <Boolean expression>

•  for q:=1 step s until n do A[q]:=B[q]
•  for k:=1,V1x2 while V1<N do

 for j:=I+G,L,1 step 1 until N, C+D
 do A[k,j]:=B[k,j]

68

Baroque Features

•  Fascination-oriented features of little
use
– They did it because they could
– Getting away from assembly languages as

far as possible
•  Baroque takes on pejorative meaning

69

Baroque
•  1 : of, relating to, or having the characteristics of a style of

artistic expression prevalent especially in the 17th century that is
marked generally by use of complex forms, bold ornamentation,
and the juxtaposition of contrasting elements often conveying a
sense of drama, movement, and tension

•  2 : characterized by grotesqueness, extravagance, complexity,
or flamboyance

•  3 : irregularly shaped —used of gems <a baroque pearl>
•  baroque. (2009). In Merriam-Webster Online Dictionary. Retrieved April

28, 2009, from http://www.merriam-webster.com/dictionary/baroque

70

Handling Cases: switch
begin

 switch wageStatus = fulltime, parttime, hourly;
 ...
 goto wageStatus[i];

fulltime: ...handle fulltime case...
 goto done;

parttime: ...handle parttime case...
 goto done;

hourly: ...handle hourly case...
 goto done;

done: ...
end;

•  Elaboration on computed GOTO of Fortran (and IBM 650)
•  Confusing, since switch, goto, and labels can be anywhere in the

program
•  Label list can contain conditionals (if i>0 then M else N)

71

Machine Independence
•  Get away from formats tied to particular computers,

punch cards -> free format
•  How should a program be formatted?

–  Left justify, one statement per line
–  Like English sentence
–  Structured (hierarchical)

•  Obeys structure principle

•  Most languages followed Algol in free format

72

Machine Independence

•  Representation issues
– Different hardware

•  Input devices
•  Character sets

– Different conventions
•  Math vs cs
•  American vs European
•  Comma (European) vs point (American) almost

defeats Algol

9/19/13

13

73

Machine Independence

•  Theorem: The more trivial the point the
more vehemently people will fight over it

•  Which symbols
– Only those available in all sets

•  Too limiting
–  Independent of particular sets

•  chosen

74

Compromise
•  Three representations

–  Reference language used in language specifications
•  E.g. “up arrow”

–  Publication language used in publications
•  E.g. sub- and super-scripts

–  Hardware language to be used by implementers
•  Use appropriate character set
•  I/O for the computer system

75

Lexical Conventions
•  Reserved words

–  Cannot be used as identifiers
–  Most languages

•  Key words
–  Words used by language are marked

•  E.g. Different font or bold
•  Hard to type

–  Algol

•  Keywords in context

76

Keywords in context
•  FORTRAN
•  Words used by language are only keywords in

context where expected
–  Hard to catch errors

•  Legal in PL/I
IF IF THEN

THEN = 0;
ELSE

ELSE = 0;

77

Some Design Considerations

•  From David Billington, The Tower and
the Bridge 1993

•  Techological Activities
– Values

•  Efficiency
•  Economy
•  Elegance

•  Dimensions
•  Scientific
•  Social
•  Symbolic

78

Efficiency

•  Materials used
•  Scientific Issue
•  Memory
•  Time

– Programmer
– Compiler
– Run

9/19/13

14

79

Economy

•  Cost-benefit
•  Social Issue
•  Benefit to programming community
•  Cost: trade-offs

– Computer vs programmer time
–  Increasing cost of residual bugs
– Program maintenance vs development

80

Economy

•  Social Influences
– Manufacturer support
– Prestigious universities teach
– Approved by influential organizations
– Standardized
– Used by “real” programmers

•  Monetary values are unstable as is
social climate

81

Elegance
•  Under-engineered

–  Risk of unanticipated interactions

•  Over-engineered
–  Inefficient or uneconomical

•  Can’t always rely solely on mathematical analysis
–  Always incomplete

•  Simplifications
•  assumptions

82

Elegance

•  General Principle: Designs that look
good are good

•  Function follows form
– But needs to be deep (not superficial)

•  Should be a joy to use
– Comfortable and safe

83

Elegance

•  Aesthetics comes from experience
•  Design obsessively

– Criticize
– Revise
– Discard

84

In Summary, Algol
•  Never had widespread use

–  No I/O
–  Competing directly with FORTRAN

•  Major milestones
–  Block-structured
–  Nested
–  Recursive
–  Free-form
–  BNF - mathematical theory of formal languages

9/19/13

15

85

Algol by reputation

•  General
•  Regular
•  Elegant
•  Orthogonal

86

Second Generation

•  Elaborations and generalizations of first
generation
–  Strong typing of built-in types
–  Name structures hierarchically nested
–  Structured control structures

•  Recursion
•  Parameter passing

–  Syntactic structures
•  Machine independent
•  Moving away from fixed formats

