FORTRAN

CS4100
Dr. Martin

From Principles of Programming Languages: Design,
Evaluation, and Implementation (Third Edition), by
Bruce J. MacLennan, Chapter 2, and based on slides
by Istvan Jonyer.

Highlights of Psuedo-Code

« Virtual computer
— More regularity
— Higher level
» Decreased chance of errors
— Automate tedious and error-prone tasks
* Increased security
— Error checking
Simplify debugging

— trace

Now: FORTRAN
The First Generation

« Early 1950s

— Simple assemblers and libraries of
subroutines were tools of the day

— Automatic programming was considered
unfeasible

— Good coders liked being masters of the
trade

 Laning and Zierler at MIT in 1952
— Algebraic language

Backus at IBM

Visionary at IBM
Recognized need for faster coding practice

Need “language” that allows decreasing costs to
linear, in size of the program

Speedcoding for IBM 701

— Language based on mathematical notation

— Interpreter to simulate floating point arithmetic

Backus at IBM

Goals
— Get floating point operations into hardware: IBM 704
« Exposes deficiencies in pseudo-code
— Decrease programming costs
+ Programmers to write in conventional mathematical notation
« Still generate efficient code
IBM authorizes project
— Backus begins outlining FORTRAN
* IBM Mathematical FORmula TRANslating System
— Has few assistants

— Project is overlooked (greeted with indifference and
skepticism according to Dijkstra)

Meanwhile

Grace Hopper organizes Symposia via Office of Naval Research
(ONR)
Backus meets Laning and Zierler
Later (1978) Backus says:
— “As far as we were aware we simply made up the language as we
went along. We did not regard language design as a difficult

problem, merely as a simple prelude to the real problem: designing
a compiler which could produce efficient programs.”

FORTRAN compiler works!

9/4/13

FORTRAN timeline

* 1954: Project approved
* 1957: FORTRAN
— First version released
* 1958: FORTRAN Il and IlI
— Still many dependencies on IBM 704
* 1962: FORTRAN IV
— “ANS FORTRAN” by American National Standards Institute
— Breaks machine dependence
— Few implementations follow the specifications

+ We’ll look at 1966 ANS FORTRAN

FORTRAN

» Goals

— Decrease programming costs (to IBM)
— Efficiency

Sample FORTRAN program

DIMENSION DTA(900)
SUM 0.0
READ 10, N
10 FORMAT(I3)
DO201=1,N
READ 30, DTA(l)
30 FORMAT(F10.6)
IF (DTA(I)) 25, 20, 20
25 DTA(l) = -DTA())
20 CONTINUE

Structural Organization

» Preliminary specification did not include subprograms
(like in pseudo-code)

» FORTRAN I, however, already included subprograms

Subprogram 1

Subprogram n

Constructs

 Declarative constructs
— (First part in pseudo-code: data
initialization)
— Declare facts about the program, to be
used at compile-time
* Imperative constructs
— (Second part in pseudo-code: program)
— Commands to be executed during run-time

Declarative Constructs

Declarations include

— Allocate area of memory of a specified size

— Attach symbolic name to that area of memory
— Initialize the memory

FORTRAN example

- DIMENSION DTA (900)

- DATA DTA, SUM / 900%0.0, 0.0

« initializes DTA to 900 zeroes
+ SUM to 0.0

9/4/13

Imperative Constructs

» Categories:
— Computational
« E.g.: Assignment, Arithmetic operations
+ FORTRAN: AVG = SUM / FLOAT (N)
— Control-flow
+ E.g.: comparisons, loop
* FORTRAN:
- IF-statements
— DO loop
- GoTo
— Input/output
« E.g.: read, print
. FOI?TRAN: Elaborate array of I/O instructions (tapes, drums,
etc.

Building a FORTRAN Program

« Interpretation unacceptable, since the selling point
is speed
» Need the following stages to build:

1. Compilation
Translate code to relocatable object code

2. Linking
Incorporating libraries (resolving external dependencies)
3. Loading

Program loaded into memory; converted from relocatable to
absolute format

4. Execution
Control is turned over to the processor

Compilation

» Compilation has 3 phases
— Syntactic analysis
« Classify statements, constructs and extract their parts
— Optimization
+ FORTRAN has considerable optimizations, since that was the
selling point
— Code synthesis
« Put together parts of object code instructions in relocatable
format

DESIGN: Control Structures

« Control structures control flow in the
program

* Most important statement in FORTRAN:
— Assignment Statement

DESIGN: Control Structures

» Machine Dependence (1st generation)
* In FORTRAN, these were based on
native IBM 704 branch instructions
— “Assembly language for IBM 704"

FORTRAN II statement IBM 704 branch operation

GOTO n TRA k (transfer direct)
GOTO n, (nl, n2,..,nm) TRA i (transfer indirect)
GOTO (nl, n2,.,nm), n TRA i,k (transfer indexed)
IF (a) nl, n2, n3 CAS k

IF ACCUMULATOR OVERFLOW nl, n2 TOV k

Arithmetic |IF-statement

« Example of machine dependence
- IF (a) nl, n2, n3
— Evaluate a: branch to
* nl:if -,
. n2:if0,
* n3:if +
— CAS instruction in IBM 704
* More conventional IF-statement was later
introduced
-IF (X .EQ. A(I)) K =1 - 1

9/4/13

Principles of Programming

» The Portability Principle
— Avoid features or facilities that are

dependent on a particular computer or a

small class of computers.

GOTO

» Workhorse of control flow in FORTRAN
» 2-way branch:
IF (condition) GOTO 100
case for false
GOTO 200
100 case for true
200
« Equivalent to if-then-else in newer languages

Reversing TRUE and FALSE

» To get if-then-else —style if:

IF (.NOT. (condition)) GOTO 100

case for true

GOTO 200
100 case for false
200

n-way Branching
with Computed GOTO

GOTO (L, Ly, Ly L;),
10 case 1
GOTO 100
20 case 2
GOTO 100
30 case 3
GOTO 100
40 case 4
GOTO 100
100
« Transfer control to label L, if | contains k
« Jump Table

n-way Branching
with Computed GOTO

GOTO (10, 20, 30, 40), I
10 case 1
GOTO 100
20 case 2
GOTO 100
30 case 3
GOTO 100
40 case 4
GOTO 100
100

* IF and GOTO are selection statements

Loops

* Loops are implemented using combinations

of IF and GOTOs
Trailing-decision loop:
100 ...body of loop...
IF (loop not done) GOTO 100
» Leading-decision loop:
100 IF (loop done) GOTO 200
...body of loop..
GOTO 100
200 ...
* Readable?

9/4/13

But wait, there’ s more!

» Mid-decision loop:

100 ...first half of loop...
IF (loop done) GOTO 200
...second half of Iloop...
GOTO 100

200 ...

Hmmm...

* Very difficult to know what control
structure is intended

+ Spaghetti code
* Very powerful
» Must be a principle in here somewhere

Principles of Programming

* The Structure Principle (Dijkstra)

— The static structure of the program should
correspond in a simple way to the dynamic
structure of the corresponding
computations.

* What does this mean?

— Should be able to visualize behavior of
program based on written form

GOTO: A Two-Edged Sword

* Very powerful
— Can be used for good or for evil
But seriously is GOTO good or bad?

— Good: very flexible, can implement
elaborate control structures

— Bad: hard to know what is intended
— Violates the structure principle

But that’ s not all!

* We just saw the Computed GOTO:
GOTO (L;, Ly, .., Ly, I
— Jumps to label 1, 2, ...
» Now consider the Assigned GOTO:
GOTO N, (L;, L,, ..., L))
— Jumps to ADDRESS in N
— List of labels not necessary
— Must be used with ASSIGN-statement
ASSIGN 20 TO N
— Put address of statement 20 into N
— Not the same as N =20 !l

Ex: Computed and Assigned
GOTOs

ASSIGN 20 TO N * N has address of stmt

20, say it is 347

« Look for 347 in jump
GoTo (20, 30, 40, 50), N table - out of range

* Not checked

« Fetch value at 347 and
use as destination for
jump

* Problem???
— Computed should have

been Assigned

9/4/13

Ex: Computed and Assigned
GOTOs

I =23 + lexpected to have an
address

+ GOTO statement with
address 3
— Probably in area used by
system, i.e. not a stmt
+ Problem???
— Assigned should have
been computed

GOTO I, (20, 30, 40, 50)

Principles of Programming

» The Syntactic Consistency Principle
— Things that look similar should be similar
and things that look different should be
different.

Syntactic Consistency

» Best to avoid syntactic forms that can be converted to
other forms by a simple error
— *and*
— Weak Typing (more on this later)
* Integer variables
— Integers
— Addresses of statements
— Character strings
+ Maybe a LABEL type?
— Catch errors at compile time

Even worse...

* Confusing the two GOTOs will not be
caught by the compiler

* Violates the defense in depth principle

Principles of Programming

* The Defense in Depth Principle
— If an error gets through one line of defense,
then it should be caught by the next line of
defense.

The DO-loop

» Fortunately, FORTRAN provides the DO-loop
» Higher-level than IF-GOTO-style control structures
— No direct machine-equivalency
DO 100 I =1, N
A(I) = A(I) * 2
100 CONTINUE
« |is called the controlled variable
» CONTINUE must have matching label
» DO allows stating what we want: higher level
— Only built-in higher level structure

9/4/13

Nesting

* The DO-loop can be nested
DO 100 I =1, N

DO 200 J =1, N

200 CONTINUE
100 CONTINUE
— They must be correctly nested

— Optimized: controlled variable can be stored in
index register
— Note: we could have done this with GOTO

Principles of Programming

» Preservation of Information Principle
— The language should allow the representation of
information that the user might know and that the
compiler might need.

* Do-loop makes explicit
— Control variable
— Initial and final values
— Extent of loop

» Ifand GOTO

— Compiler has to figure out

Subprograms

» AKA subroutine
— User defined
— Function returns a value
+ Can be used in an expression
Important, late addition
* Why are they important?
— Subprograms define procedural abstractions
— Repeated code can be abstracted out, variables
formalized
— Allow large programs to be modularized

» Humans can only remember a few things at a time
(about 7)

Subprograms
SUBROUTINE Name (formals) e \Nhen invoked
--body... — Using call stmt
RETURN
END — Formals bound to

actuals

— Formals aka dummy
CALL Name (actuals) variables

Example
SUBROUTINE DIST (d, x, y)
D=X-Y
IF (D .LT. 0) D= -D
RETURN
END

CALL DIST (DIFFER, POSX, POSY)

Principles of Programming

» The Abstraction Principle
— Avoid requiring something to be stated
more than once; factor out the recurring
pattern.

9/4/13

Libraries

» Subprograms encourage libraries

— Subprograms are independent of each
other

— Can be compiled separately
— Can be reused later

— Maintain library of already debugged and
compiled useful subprograms

Parameter Passing

* Once we decide on subprograms, we
need to figure out how to pass
parameters

» Fortran parameters
— Input
— Output

« Need address to write to
—Both

Parameter Passing

« Pass by reference
— On chance may need to write to
« all vars passed by reference
— Pass the address of the variable, not its value
— Advantage:
« Faster for larger (aggregate) data constructs
+ Allows output parameters
— Disadvantage:
+ Address has to be de-referenced
— Not by programmer—still, an additional operation
+ Values can be modified by subprogram
» Need to pass size for data constructs - if wrong?

A Dangerous Side-Effect

« What if parameter passed in is not a variable?
SUBROUTINE SWITCH (N)

N =3

RETURN

END

CALL SWITCH (2)

» The literal 2 can be changed to the literal 3 in FORTRAN’ s
literal table!!!
- 1=2+2 | =6777?
— Violates security principle

Principles of Programming

 Security principle

— No program that violates the definition of
the language, or its own intended structure,
should escape detection.

Pass by Value-Result

Also called copy-restore

Instead of pass by reference, copy the value of actual
parameters into formal parameters

Upon return, copy new values back to actuals

Both operations done by caller

— Can know not to copy meaningless result
« E.g. actual was a constant or expression

Callee never has access to caller’ s variables

9/4/13

Activation Records

* What happens when a subprogram is
called?

— Transmit parameters
— Save caller’ s status
— Enter the subprogram
— Restore caller’ s state
— Return to caller

What happens exactly?

 Before subprogram invocation:

— Place parameters into callee’ s activation
record

— Save caller’ s status
» Save content of registers
« Save instruction pointer (IP)

— Save pointer to caller’ s activation record in
callee’ s activation record

— Enter the subprogram

What happens exactly?

* Returning from subprogram:
— Restore instruction pointer to caller’ s
— Return to caller
— Caller needs to restore its state (registers)

— If subprogram is a function, return value
must be made accessible

Contents of Activation Record

» Parameters passed to subprogram
* P (resumption address)

+ Dynamic link (address of caller’ s
activation record)

+ Temporary areas for storing registers

DESIGN: Data Structures

First data structures

— Suggested by mathematics
* Primitives
* Arrays

Primitives

* Primitives are scalars only
— Integers
— Floating point numbers
— Double-precision floating point
— Complex numbers
— No text (string) processing

9/4/13

Representations

* Word-oriented
— Most commonly 32 bits
* Integer
— Represented on 31 bits + 1 sign bit
Floating point

— Using scientific notation: characteristic +
mantissa

|S’"‘SC‘C7‘““CO""21‘“"mnl

Arithmetic Operators

+ 2+31=7
— 2isinteger, 3.1 is floating point
» How do we handle this situation?
— Explicit type-casting: FLOAT(2) + 3.1
« Type-casting is also called “coercion”
— FORTRAN: Operators are overloaded
— Automatic type coercion
« Always coerce to encompassing set
— Integer + Float - float addition
— Float * Double - double multiplication
— Integer — Complex - complex subtraction
« Types dominate their subsets

Example

« X*(1/3) = ?
1/3=0
1/3.0 = 0.33333

Hollerith Constants

« Early form of character string in FORTRAN

— BHCARMEL is a six character string ‘CARMEL’ (H is for
Hollerith)

— Second-class citizens
 No operations allowed

« Can be read into an integer variable, which cannot (should not)
be altered

* Problems

— Integer representing a Hollerith constant may be altered,
which makes no sense

» Weak typing
— No type checking is performed

Constructor: Array

¢ Constructor

— Method to build complex data structures
from primitive ones

* FORTRAN only has array constructors
DIMENSION DTA, COORD(10,10)
— Initialization is not required
— Maximum 3 dimensions

Representation

« Simple, intuitive representation
« Column-major order

— Most languages do row-major order Element | Address
— Addressing equation: A(l,1) A

© a{AQ)} =afA(l)} +1=a{A()} - 1+2 AR A+l

o af{AG)} =afA(l)} = 1+i

o afAl)} = afA(LD}+ (- Dm+i-1

- FORTRAN uses 1-based ing AmD [A*m-1

~ One addressable slot of each elt A(2) A+m

Am2) |A+2m-1

A(mn) |[A+nm-1

9/4/13

10

Optimizations

« Arrays are mostly associated with loops

— Most programmers initialize controlled variable to 1, and
reference array A(i)

— Optimization:
« Initialize controlled variable to address of array element
« Therefore, we’ Il increment address itself
« Dereference controlled variable to get array element

Subscripts

» Subscripts can be expressions
— A(i+m*c)
— This defeats above optimization
— Therefore, subscripts are limited to
« candc’ are integers, v is an integer variable
MY
.y
* vtc, v-¢
. ctv
o cHyvte’, c*v-c
— A(J - 1) ok; A(1+J) not ok
« Optimizations like this sold FORTRAN

DESIGN: Name Structures

« What do name structures structure?
— Names, of course!

* Primitives bind names to objects
—INTEGER |, J, K

« Allocate integers |, J, and K, and bind the
names to memory locations

* Declare: name, type, storage

Declarations

» Declarations are non-executable
statements

« Unlike IF, GOTO, etc., which are
executable statements
- Static allocation

— Allocated once, cannot be deallocated for
reuse

— FORTRAN does not do dynamic allocation

Optional Declaration

» FORTRAN does not require variables to be declared
— First use will declare a variable
+ What’ s wrong with this?
— COUNT = COUMT +1
— What if first use is not assignment?
» Convention:
— Variables starting with letters i, j, k, |, m, n are integers
— Others are floating point

— Bad practice: Encourages funny names (KOUNT, ISUM,
XLENGTH...)

Now: Semantics (meaning)

“They went to the bank of the Rio
Grande.”

What does this mean?
How do we know?
CONTEXT, CONTEXT, CONTEXT

9/4/13

1

Programming Languages

« X =COUNT(l)
* What does this mean

— X integer or real

— COUNT array or function
+ Again Context

— Set of variables visible when statement is
seen

¢ Context is called ENVIRONMENT

SCOPE

» Scope of a binding of a name
— Region of program where binding is visible
* In FORTRAN
— Subprogram names GLOBAL
» Can be called from anywhere
— Variable names LOCAL
» To subprogram where declared

Contour Diagram
GRIobalscope
S

Main program

x [1

N
RQ2)
S(X)

S,

El

=% |Z

S(X)

Once we have subprograms...

» We need to find a way to share data
— Parameters
* Pass by reference
 Pass by value-result
— Caller copies value of actual to formal variable
— On return, caller copies result value to actual
» Omit for constants or expressions as actuals

Once we have subprograms...

» Share Data With Just Parameters?
— Cumbersome, and hard to maintain
— Produces long list of parameters

— If data structure changes, there are many changes
to be made

— Violates information hiding

Sharing Data

* FORTRAN' s solution:

COMMON blocks allow more flexibility
— Allows sharing data between subprograms
— Scope rules necessitate this

» Consider a symbol table

SUBROUTINE ARRAY2 (N, L, C, D1, D2)

COMMON /SYMTAB/ NAMES (100), LOC(100), TYPE(100)

SUBROUTINE VAR (N, L, C)

COMMON /SYMTAB/ NAMES (100), LOC(100), TYPE(100)

9/4/13

12

COMMON Problems

* Tedious to write

* Unreadable

Virtually impossible to change AND
COMMON permits aliasing, which is
dangerous

— If COMMON specifications don’ t agree,
misuse is possible

Aliasing

» The ability to have more than one name
for the same memory location

* Very flexible!
COMMON /B/ M, A(100)

COMMON /B/ X, K, C(50), D(50)

EQUIVALENCE

 Since dynamic memory allocation is not
supported, and memory is scarce,
FORTRAN has EQUIVALENCE

DIMENSION INDATA(10000), RESULT(8000)
EQUIVALENCE INDATA (1), RESULT(8)

« Allows a way to explicitly alias two
arrays to the same memory

EQUIVALENCE

» This is only to be used when usage of
INDATA and RESULT do not overlap

« Allows access to different data types (float as
if it was integer, etc.)

* Has same dangers as COMMON

DESIGN: Syntactic Structures

* Languages are defined by lexics and syntax
— Lexics
Way to combine characters to form words or symbols

E.g. Identifier must begin with a letter, followed by no
more than 5 letters or digits

— Syntax
Way to combine symbols into meaningful instructions
» Syntactic analysis:
Lexical analyzer (scanner)
Syntactic analyzer (parser)

Fixed Format Lexics

« Still using punch-cards!
» Particular columns had particular meanings
» Statements (columns 7-72) were free format

Columns Purpose

1-5 Statement number
6 Continuation

7-72 Statement

73-90 Sequence number

9/4/13

13

Blanks Ignored

* FORTRAN ignored spaces (not just white
spaces)

» Thisisveryunfortunate!
DIMENSION INDATA(10000), RESULT(8000)

DIMENSIONINDATA (10000), RESULT (8000)
DIMENSIONINDATA (10000), RESULT (8000)

» Lexing and parsing such a language is very
difficult

Blanks Ignored

* In combination with other features, it
promoted mistakes

DO 20 I
DO 20 I
DO20I =

1. 100
1, 100
.100

o

* Variable DO20I is unlikely, but . and , are
next to each other on the keyboard...

No Reserved Words

« FORTRAN allows variable named IF

DIMENSION IF(100)

* How do you read this?
IF (I -1) =123
IF (I - 1) 1, 2, 3

* The compiler does not know what
- 1 Will be
— Needs to see , or = to decide

Algebraic Notation

» One of the main goals was to facilitate
scientific computing
— Algebraic notation had to look like math
—(-B + SQRT(B**2 — 4*AA*C))/(2*A)
— Very good, compared to our pseudo-code

* Problems

— How do you parse and execute such a
statement?

Operators Need Precedence

b2 — 4ac == (b?) — (4ac)
ab? == a(b?)
Precedence rules
1. Exponentiation
2. Multiplication and division
3. Addition and subtraction
Operations on the same level are associated to the
left (read left to right)
How about unary operators (-)?

Some Highlights

* Integer type is overworked

— Integer
— Character strings
— Addresses

* Weak typing
+ Combine the two and we have a security loophole

— Meaningless operations can be performed without warning

9/4/13

14

Some Highlights

» Arrays
— Only data structure
— Data constructor
— Static
— Limited to three dimensions
— Restrictions on index expressions
— Optimized
— Column major order for 2-dimensional
— Not required to be initialized

9/4/13

15

