
9/4/13

1

FORTRAN

CS4100
Dr. Martin

From Principles of Programming Languages: Design,
Evaluation, and Implementation (Third Edition), by

Bruce J. MacLennan, Chapter 2, and based on slides
by Istvan Jonyer.

Highlights of Psuedo-Code
•  Virtual computer

–  More regularity
–  Higher level

•  Decreased chance of errors
–  Automate tedious and error-prone tasks

•  Increased security
–  Error checking

•  Simplify debugging
–  trace

Now: FORTRAN
The First Generation

•  Early 1950s
– Simple assemblers and libraries of

subroutines were tools of the day
– Automatic programming was considered

unfeasible
– Good coders liked being masters of the

trade
•  Laning and Zierler at MIT in 1952

– Algebraic language

Backus at IBM
•  Visionary at IBM
•  Recognized need for faster coding practice
•  Need “language” that allows decreasing costs to

linear, in size of the program
•  Speedcoding for IBM 701

–  Language based on mathematical notation
–  Interpreter to simulate floating point arithmetic

Backus at IBM
•  Goals

–  Get floating point operations into hardware: IBM 704
•  Exposes deficiencies in pseudo-code

–  Decrease programming costs
•  Programmers to write in conventional mathematical notation
•  Still generate efficient code

•  IBM authorizes project
–  Backus begins outlining FORTRAN

•  IBM Mathematical FORmula TRANslating System
–  Has few assistants
–  Project is overlooked (greeted with indifference and

skepticism according to Dijkstra)

Meanwhile
•  Grace Hopper organizes Symposia via Office of Naval Research

(ONR)
•  Backus meets Laning and Zierler
•  Later (1978) Backus says:

–  “As far as we were aware we simply made up the language as we
went along. We did not regard language design as a difficult
problem, merely as a simple prelude to the real problem: designing
a compiler which could produce efficient programs.”

•  FORTRAN compiler works!

9/4/13

2

FORTRAN timeline
•  1954: Project approved
•  1957: FORTRAN

–  First version released
•  1958: FORTRAN II and III

–  Still many dependencies on IBM 704
•  1962: FORTRAN IV

–  “ANS FORTRAN” by American National Standards Institute
–  Breaks machine dependence
–  Few implementations follow the specifications

•  We’ll look at 1966 ANS FORTRAN

FORTRAN

•  Goals
– Decrease programming costs (to IBM)
– Efficiency

Sample FORTRAN program
 DIMENSION DTA(900)
 SUM 0.0
 READ 10, N

10 FORMAT(I3)
 DO 20 I = 1, N
 READ 30, DTA(I)

30 FORMAT(F10.6)
 IF (DTA(I)) 25, 20, 20

25 DTA(I) = -DTA(I)
20 CONTINUE

 …

Structural Organization
•  Preliminary specification did not include subprograms

(like in pseudo-code)
•  FORTRAN I, however, already included subprograms

Main program

Subprogram 1

Subprogram n

.

.

.

Constructs

•  Declarative constructs
–  (First part in pseudo-code: data

initialization)
– Declare facts about the program, to be

used at compile-time
•  Imperative constructs

–  (Second part in pseudo-code: program)
– Commands to be executed during run-time

Declarative Constructs

•  Declarations include
–  Allocate area of memory of a specified size
–  Attach symbolic name to that area of memory
–  Initialize the memory

•  FORTRAN example
–  DIMENSION DTA (900)
–  DATA DTA, SUM / 900*0.0, 0.0

•  initializes DTA to 900 zeroes
•  SUM to 0.0

9/4/13

3

Imperative Constructs
•  Categories:

–  Computational
•  E.g.: Assignment, Arithmetic operations
•  FORTRAN: AVG = SUM / FLOAT(N)

–  Control-flow
•  E.g.: comparisons, loop
•  FORTRAN:

–  IF-statements
–  DO loop
–  GOTO

–  Input/output
•  E.g.: read, print
•  FORTRAN: Elaborate array of I/O instructions (tapes, drums,

etc.)

Building a FORTRAN Program
•  Interpretation unacceptable, since the selling point

is speed
•  Need the following stages to build:

1.  Compilation
 Translate code to relocatable object code

2.  Linking
 Incorporating libraries (resolving external dependencies)

3.  Loading
 Program loaded into memory; converted from relocatable to
absolute format

4.  Execution
 Control is turned over to the processor

Compilation
•  Compilation has 3 phases

–  Syntactic analysis
•  Classify statements, constructs and extract their parts

–  Optimization
•  FORTRAN has considerable optimizations, since that was the

selling point
–  Code synthesis

•  Put together parts of object code instructions in relocatable
format

DESIGN: Control Structures

•  Control structures control flow in the
program

•  Most important statement in FORTRAN:
– Assignment Statement

DESIGN: Control Structures
•  Machine Dependence (1st generation)
•  In FORTRAN, these were based on

native IBM 704 branch instructions
– “Assembly language for IBM 704”
 FORTRAN II statement IBM 704 branch operation

GOTO n TRA k (transfer direct)

GOTO n, (n1, n2,…,nm) TRA i (transfer indirect)

GOTO (n1, n2,…,nm), n TRA i,k (transfer indexed)

IF (a) n1, n2, n3 CAS k

IF ACCUMULATOR OVERFLOW n1, n2 TOV k

… …

Arithmetic IF-statement

•  Example of machine dependence
–  IF (a) n1, n2, n3
–  Evaluate a: branch to

•  n1: if -,
•  n2: if 0,
•  n3: if +

–  CAS instruction in IBM 704
•  More conventional IF-statement was later

introduced
–  IF (X .EQ. A(I)) K = I - 1

9/4/13

4

Principles of Programming

•  The Portability Principle
– Avoid features or facilities that are

dependent on a particular computer or a
small class of computers.

GOTO

•  Workhorse of control flow in FORTRAN
•  2-way branch:

 IF (condition) GOTO 100
 case for false
 GOTO 200

100 case for true

200

•  Equivalent to if-then-else in newer languages

Reversing TRUE and FALSE

•  To get if-then-else –style if:
 IF (.NOT. (condition)) GOTO 100
 case for true

 GOTO 200

100 case for false

200

n-way Branching
with Computed GOTO

 GOTO (L1, L2, L3, L4), I
10 case 1
 GOTO 100

20 case 2
 GOTO 100

30 case 3
 GOTO 100

40 case 4
 GOTO 100

100

•  Transfer control to label Lk if I contains k
•  Jump Table

n-way Branching
with Computed GOTO

 GOTO (10, 20, 30, 40), I
10 case 1
 GOTO 100
20 case 2
 GOTO 100
30 case 3
 GOTO 100
40 case 4
 GOTO 100
100

•  IF and GOTO are selection statements

Loops
•  Loops are implemented using combinations

of IF and GOTOs
•  Trailing-decision loop:

100 …body of loop…
 IF (loop not done) GOTO 100

•  Leading-decision loop:
100 IF (loop done) GOTO 200
 …body of loop…
 GOTO 100
200 …

•  Readable?

9/4/13

5

But wait, there’s more!

•  Mid-decision loop:
100 …first half of loop…
 IF (loop done) GOTO 200
 …second half of loop…
 GOTO 100
200 …

Hmmm…

•  Very difficult to know what control
structure is intended

•  Spaghetti code
•  Very powerful
•  Must be a principle in here somewhere

Principles of Programming

•  The Structure Principle (Dijkstra)
– The static structure of the program should

correspond in a simple way to the dynamic
structure of the corresponding
computations.

•  What does this mean?
– Should be able to visualize behavior of

program based on written form

GOTO: A Two-Edged Sword

•  Very powerful
– Can be used for good or for evil

•  But seriously is GOTO good or bad?
– Good: very flexible, can implement

elaborate control structures
– Bad: hard to know what is intended
– Violates the structure principle

But that’s not all!
•  We just saw the Computed GOTO:

GOTO (L1, L2, …, Ln), I
–  Jumps to label 1, 2, …

•  Now consider the Assigned GOTO:
GOTO N, (L1, L2, …, Ln)
–  Jumps to ADDRESS in N
–  List of labels not necessary
–  Must be used with ASSIGN-statement
 ASSIGN 20 TO N

–  Put address of statement 20 into N
–  Not the same as N = 20 !!!!

Ex: Computed and Assigned
GOTOs

ASSIGN 20 TO N

GOTO (20, 30, 40, 50), N

•  N has address of stmt
20, say it is 347

•  Look for 347 in jump

table - out of range
•  Not checked
•  Fetch value at 347 and

use as destination for
jump

•  Problem???
–  Computed should have

been Assigned

9/4/13

6

Ex: Computed and Assigned
GOTOs

I = 3

GOTO I, (20, 30, 40, 50)

•  I expected to have an
address

•  GOTO statement with
address 3

–  Probably in area used by
system, i.e. not a stmt

•  Problem???
–  Assigned should have

been computed

Principles of Programming

•  The Syntactic Consistency Principle
– Things that look similar should be similar

and things that look different should be
different.

Syntactic Consistency
•  Best to avoid syntactic forms that can be converted to

other forms by a simple error
–  ** and *
–  Weak Typing (more on this later)

•  Integer variables
–  Integers
–  Addresses of statements
–  Character strings

•  Maybe a LABEL type?
–  Catch errors at compile time

Even worse…

•  Confusing the two GOTOs will not be
caught by the compiler

•  Violates the defense in depth principle

Principles of Programming

•  The Defense in Depth Principle
–  If an error gets through one line of defense,

then it should be caught by the next line of
defense.

The DO-loop
•  Fortunately, FORTRAN provides the DO-loop
•  Higher-level than IF-GOTO-style control structures

–  No direct machine-equivalency
 DO 100 I = 1, N
 A(I) = A(I) * 2
100 CONTINUE

•  I is called the controlled variable
•  CONTINUE must have matching label
•  DO allows stating what we want: higher level

–  Only built-in higher level structure

9/4/13

7

Nesting
•  The DO-loop can be nested

DO 100 I = 1, N
 ...

DO 200 J = 1, N
 ...
200 CONTINUE

100 CONTINUE
–  They must be correctly nested
–  Optimized: controlled variable can be stored in

index register
–  Note: we could have done this with GOTO

Principles of Programming

•  Preservation of Information Principle
–  The language should allow the representation of

information that the user might know and that the
compiler might need.

•  Do-loop makes explicit

–  Control variable
–  Initial and final values
–  Extent of loop

•  If and GOTO
–  Compiler has to figure out

Subprograms
•  AKA subroutine

–  User defined
–  Function returns a value

•  Can be used in an expression

•  Important, late addition
•  Why are they important?

–  Subprograms define procedural abstractions
–  Repeated code can be abstracted out, variables

formalized
–  Allow large programs to be modularized

•  Humans can only remember a few things at a time
(about 7)

Subprograms
SUBROUTINE Name(formals)

…body…
RETURN

END

…
CALL Name (actuals)

•  When invoked
–  Using call stmt
–  Formals bound to

actuals
–  Formals aka dummy

variables

Example
SUBROUTINE DIST (d, x, y)

D = X – Y
IF (D .LT. 0) D = -D

RETURN

END

…
CALL DIST (DIFFER, POSX, POSY)

…

Principles of Programming

•  The Abstraction Principle
– Avoid requiring something to be stated

more than once; factor out the recurring
pattern.

9/4/13

8

Libraries

•  Subprograms encourage libraries
– Subprograms are independent of each

other
– Can be compiled separately
– Can be reused later
– Maintain library of already debugged and

compiled useful subprograms

Parameter Passing

•  Once we decide on subprograms, we
need to figure out how to pass
parameters

•  Fortran parameters
–  Input
– Output

•  Need address to write to

– Both

Parameter Passing

•  Pass by reference
–  On chance may need to write to

•  all vars passed by reference
–  Pass the address of the variable, not its value
–  Advantage:

•  Faster for larger (aggregate) data constructs
•  Allows output parameters

–  Disadvantage:
•  Address has to be de-referenced

–  Not by programmer—still, an additional operation
•  Values can be modified by subprogram
•  Need to pass size for data constructs - if wrong?

A Dangerous Side-Effect
•  What if parameter passed in is not a variable?
SUBROUTINE SWITCH (N)
N = 3
RETURN
END
…
CALL SWITCH (2)
•  The literal 2 can be changed to the literal 3 in FORTRAN’s

literal table!!!
–  I = 2 + 2 I = 6????
–  Violates security principle

Principles of Programming

•  Security principle
– No program that violates the definition of

the language, or its own intended structure,
should escape detection.

Pass by Value-Result

•  Also called copy-restore
•  Instead of pass by reference, copy the value of actual

parameters into formal parameters
•  Upon return, copy new values back to actuals
•  Both operations done by caller

–  Can know not to copy meaningless result
•  E.g. actual was a constant or expression

•  Callee never has access to caller’s variables

9/4/13

9

Activation Records

•  What happens when a subprogram is
called?
– Transmit parameters
– Save caller’s status
– Enter the subprogram
– Restore caller’s state
– Return to caller

What happens exactly?

•  Before subprogram invocation:
– Place parameters into callee’s activation

record
– Save caller’s status

•  Save content of registers
•  Save instruction pointer (IP)

– Save pointer to caller’s activation record in
callee’s activation record

– Enter the subprogram

What happens exactly?

•  Returning from subprogram:
– Restore instruction pointer to caller’s
– Return to caller
– Caller needs to restore its state (registers)
–  If subprogram is a function, return value

must be made accessible

Contents of Activation Record

•  Parameters passed to subprogram
•  P (resumption address)
•  Dynamic link (address of caller’s

activation record)
•  Temporary areas for storing registers

DESIGN: Data Structures

•  First data structures
– Suggested by mathematics

•  Primitives
•  Arrays

Primitives

•  Primitives are scalars only
–  Integers
– Floating point numbers
– Double-precision floating point
– Complex numbers
– No text (string) processing

9/4/13

10

Representations
•  Word-oriented

– Most commonly 32 bits
•  Integer

– Represented on 31 bits + 1 sign bit
•  Floating point

– Using scientific notation: characteristic +
mantissa

sm sc c7 … c0 m21 … m0

Arithmetic Operators
•  2 + 3.1 = ?

–  2 is integer, 3.1 is floating point
•  How do we handle this situation?

–  Explicit type-casting: FLOAT(2) + 3.1
•  Type-casting is also called “coercion”

–  FORTRAN: Operators are overloaded
–  Automatic type coercion

•  Always coerce to encompassing set
–  Integer + Float à float addition
–  Float * Double à double multiplication
–  Integer – Complex à complex subtraction

•  Types dominate their subsets

Example

•  X**(1/3) = ?
1/3 = 0
1/3.0 = 0.33333

Hollerith Constants
•  Early form of character string in FORTRAN

–  6HCARMEL is a six character string ‘CARMEL’ (H is for
Hollerith)

–  Second-class citizens
•  No operations allowed
•  Can be read into an integer variable, which cannot (should not)

be altered

•  Problems
–  Integer representing a Hollerith constant may be altered,

which makes no sense
•  Weak typing

–  No type checking is performed

Constructor: Array

•  Constructor
– Method to build complex data structures

from primitive ones
•  FORTRAN only has array constructors

DIMENSION DTA, COORD(10,10)

–  Initialization is not required
– Maximum 3 dimensions

Representation
•  Simple, intuitive representation
•  Column-major order

–  Most languages do row-major order
–  Addressing equation:

•  α{A(2)} = α{A(1)} + 1 = α{A(1)} – 1 + 2
•  α{A(i)} = α{A(1)} – 1 + i
•  α{A(i,j)} = α{A(1,1)} + (j – 1)m + i – 1
•  FORTRAN uses 1-based addressing

–  One addressable slot of each elt

Element Address
A(1,1) A

A(2,1) A + 1

…

A(m,1) A + m - 1

A(1,2) A + m

…

A(m,2) A + 2m - 1

…

A(m,n) A + nm - 1

9/4/13

11

Optimizations

•  Arrays are mostly associated with loops
–  Most programmers initialize controlled variable to 1, and

reference array A(i)
–  Optimization:

•  Initialize controlled variable to address of array element
•  Therefore, we’ll increment address itself
•  Dereference controlled variable to get array element

Subscripts
•  Subscripts can be expressions

–  A(i+m*c)
–  This defeats above optimization
–  Therefore, subscripts are limited to

•  c and c’ are integers, v is an integer variable
•  c
•  v
•  v+c, v-c
•  c*v
•  c*v+c’, c*v-c’

–  A(J - 1) ok; A(1+J) not ok
•  Optimizations like this sold FORTRAN

DESIGN: Name Structures

•  What do name structures structure?
– Names, of course!

•  Primitives bind names to objects
–  INTEGER I, J, K

•  Allocate integers I, J, and K, and bind the
names to memory locations

•  Declare: name, type, storage

Declarations

•  Declarations are non-executable
statements

•  Unlike IF, GOTO, etc., which are
executable statements

•  Static allocation
– Allocated once, cannot be deallocated for

reuse
– FORTRAN does not do dynamic allocation

Optional Declaration
•  FORTRAN does not require variables to be declared

–  First use will declare a variable
•  What’s wrong with this?

–  COUNT = COUMT + 1
–  What if first use is not assignment?

•  Convention:
–  Variables starting with letters i, j, k, l, m, n are integers
–  Others are floating point
–  Bad practice: Encourages funny names (KOUNT, ISUM,

XLENGTH…)

Now: Semantics (meaning)

•  “They went to the bank of the Rio
Grande.”

•  What does this mean?
•  How do we know?
•  CONTEXT, CONTEXT, CONTEXT

9/4/13

12

Programming Languages

•  X = COUNT(I)
•  What does this mean

– X integer or real
– COUNT array or function

•  Again Context
– Set of variables visible when statement is

seen
•  Context is called ENVIRONMENT

SCOPE

•  Scope of a binding of a name
– Region of program where binding is visible

•  In FORTRAN
– Subprogram names GLOBAL

•  Can be called from anywhere
– Variable names LOCAL

•  To subprogram where declared

Contour Diagram
R
S

N
X
Y

N
Y

X

Main program

R S

Global scope

R(2)

S(X)

S(X)

Once we have subprograms…

•  We need to find a way to share data
– Parameters

•  Pass by reference
•  Pass by value-result

– Caller copies value of actual to formal variable
– On return, caller copies result value to actual

» Omit for constants or expressions as actuals

Once we have subprograms…
•  Share Data With Just Parameters?

–  Cumbersome, and hard to maintain
–  Produces long list of parameters
–  If data structure changes, there are many changes

to be made
–  Violates information hiding

Sharing Data
•  FORTRAN’s solution:
•  COMMON blocks allow more flexibility

–  Allows sharing data between subprograms
–  Scope rules necessitate this

•  Consider a symbol table

SUBROUTINE ARRAY2 (N, L, C, D1, D2)
COMMON /SYMTAB/ NAMES(100), LOC(100), TYPE(100)
...
SUBROUTINE VAR (N, L, C)
COMMON /SYMTAB/ NAMES(100), LOC(100), TYPE(100)

9/4/13

13

COMMON Problems

•  Tedious to write
•  Unreadable
•  Virtually impossible to change AND
•  COMMON permits aliasing, which is

dangerous
–  If COMMON specifications don’t agree,

misuse is possible

Aliasing

•  The ability to have more than one name
for the same memory location

•  Very flexible!

COMMON /B/ M, A(100)

COMMON /B/ X, K, C(50), D(50)

EQUIVALENCE
•  Since dynamic memory allocation is not

supported, and memory is scarce,
FORTRAN has EQUIVALENCE

DIMENSION INDATA(10000), RESULT(8000)

EQUIVALENCE INDATA(1), RESULT(8)

•  Allows a way to explicitly alias two
arrays to the same memory

EQUIVALENCE

•  This is only to be used when usage of
INDATA and RESULT do not overlap

•  Allows access to different data types (float as
if it was integer, etc.)

•  Has same dangers as COMMON

DESIGN: Syntactic Structures

•  Languages are defined by lexics and syntax
–  Lexics

•  Way to combine characters to form words or symbols
•  E.g. Identifier must begin with a letter, followed by no

more than 5 letters or digits
–  Syntax

•  Way to combine symbols into meaningful instructions

•  Syntactic analysis:
 Lexical analyzer (scanner)
 Syntactic analyzer (parser)

Fixed Format Lexics
•  Still using punch-cards!
•  Particular columns had particular meanings
•  Statements (columns 7-72) were free format

Columns Purpose

1-5 Statement number

6 Continuation

7-72 Statement

73-90 Sequence number

9/4/13

14

Blanks Ignored

•  FORTRAN ignored spaces (not just white
spaces)

•  Thisisveryunfortunate!

DIMENSION INDATA(10000), RESULT(8000)
D I M E N S I O N I N D A T A (1 0 0 0 0), R E S U L T (8000)
DIMENSIONINDATA(10000),RESULT(8000)

•  Lexing and parsing such a language is very
difficult

Blanks Ignored

•  In combination with other features, it
promoted mistakes

DO 20 I = 1. 100
DO 20 I = 1, 100
DO20I = 1.100

•  Variable DO20I is unlikely, but . and , are
next to each other on the keyboard…

No Reserved Words

•  FORTRAN allows variable named IF
DIMENSION IF(100)

•  How do you read this?
IF (I - 1) = 1 2 3
IF (I - 1) 1, 2, 3

•  The compiler does not know what
 IF (I - 1) will be

– Needs to see , or = to decide

Algebraic Notation

•  One of the main goals was to facilitate
scientific computing
– Algebraic notation had to look like math
–  (-B + SQRT(B**2 – 4*AA*C))/(2*A)
– Very good, compared to our pseudo-code

•  Problems
– How do you parse and execute such a

statement?

Operators Need Precedence

•  b2 – 4ac == (b2) – (4ac)
•  ab2 == a(b2)
•  Precedence rules

1.  Exponentiation
2.  Multiplication and division
3.  Addition and subtraction

•  Operations on the same level are associated to the
left (read left to right)

•  How about unary operators (-)?

Some Highlights
•  Integer type is overworked

–  Integer
–  Character strings
–  Addresses

•  Weak typing
•  Combine the two and we have a security loophole

–  Meaningless operations can be performed without warning

9/4/13

15

Some Highlights

•  Arrays
–  Only data structure
–  Data constructor
–  Static
–  Limited to three dimensions
–  Restrictions on index expressions
–  Optimized
–  Column major order for 2-dimensional
–  Not required to be initialized

